Refine Your Search

Topic

Author

Search Results

Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

A Development of Aluminum EGR Cooler for Weight Reduction and Fuel Economy

2018-04-03
2018-01-0102
As environmental problems such as global warming are emerging, regulations on automobile exhaust gas are strengthened and various exhaust gas reduction technologies are being developed in various countries in order to satisfy exhaust emission regulations. Exhaust gas recirculation (EGR) technology is a very effective way to reduce nitrogen oxides (NOx) at high combustion temperatures by using EGR coolers to lower the combustion temperature. This EGR cooler has been mass-produced in stainless steel, but it is expensive and heavy. Recently, high efficiency and compactness are required for the EGR cooler to meet the new emission regulation. If aluminum material is applied to the EGR cooler, heat transfer efficiency and light weight can be improved due to high heat transfer coefficient of aluminum compared to conventional stainless steel, but durability is insufficient. Therefore, the aluminum EGR cooler has been developed to enhance performance and durability.
Journal Article

A Development of Energy Management System with Semi-Transparent Solar Roof and Off-Cycle Credit Test Methodology for Solar Power Assisted Automobile.

2017-03-28
2017-01-0388
CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
Technical Paper

A Development of Fuel Saving Driving Technique for Parallel HEV

2018-04-03
2018-01-1006
This paper examines the effect of pulse-and-glide (PnG) driving strategies on the fuel efficiency when applied on parallel HEVs. Several PnG strategies are proposed, and these include the electrical, mechanical, and combined PnG strategies. The electrical PnG strategy denotes the hybrid powertrain control tactics in which the battery is charged or discharged according to the power demanded while maintaining the constant vehicle speed. On the other hand, the mechanical PnG strategy denotes the powertrain control tactics in which the vehicle accelerates or decelerates according to the power load while minimizing the battery usage. The combined PnG strategy involves both electrical and mechanical strategies to find a balanced point in between them. Here, a tradeoff relationship between the fuel efficiency and the vehicle drivability related to the tracking performance of the desired target speed is revealed.
Technical Paper

A Development of Smart Ventilation System

2015-03-10
2015-01-0018
There are some problems “windows fog up a lot” for ventilation system. We have Test Development Procedure to prevent the fog problems. But, Many fog problems occurred in the cars that we made. So in this paper, new ventilation system is needed and developed. The Smart Ventilation System automatically controls indoor air quality even though the blower motor is off. There are two sensors that is used for AutoDefogSensor system and CO2 CONTROL system.. The sensor is on when blower motor and heater control is off. We use these signals and make new ventilation logics. We evaluate this system in chamber & '13 winter test in USA.
Technical Paper

A Quasi-Dimensional Model for Prediction of In-Cylinder Turbulence and Tumble Flow in a Spark-Ignited Engine

2018-04-03
2018-01-0852
Improving fuel efficiency and emission characteristics are significant issues in engine research. Because the engine has complex systems and various operating parameters, the experimental research is limited by cost and time. One-dimensional (1D) simulation has attracted the attention of researchers because of its effectiveness and relatively high accuracy. In a 1D simulation, the applied model must be accurate for the reliability of the simulation results. Because in-cylinder turbulence mainly determines the combustion characteristics, and mean flow velocity affects the in-cylinder heat transfer and efficiency in a spark-ignited (SI) engine, a number of sophisticated models have been developed to predict in-cylinder turbulence and mean flow velocity. In particular, tumble is a significant factor of in-cylinder turbulence in SI engine.
Technical Paper

A Research on the Prediction of Door Opening by the Inertia Effect during a Side Impact Crash

2016-04-05
2016-01-1532
The purpose of this study is to develop a dynamic model that can accurately predict the motion of the door handle and counterweight during side impact crash tests. The door locking system, mainly composed of the door outside handle and door latch, is theoretically modeled, and it is assumed that the door outer panel can rotate and translate in all three directions during a side impact crash. Additionally, the numerical results are compared with real crash video footage, and satisfactory qualitative agreement is found. Finally, the simplified test rig that efficiently reflects the real crash test is introduced, and its operation is analyzed.
Technical Paper

A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley

2013-10-14
2013-01-2514
The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
Technical Paper

A Study of LNT & Urea SCR on DPF System to Meet the Stringent Exhaust Emission Regulation

2014-10-13
2014-01-2810
In diesel engine development, the new technology is coming out to meet the stringent exhaust emission regulation. The regulation demands more eco-friendly vehicles. Euro6c demands to meet not only WLTP mode, but also RDE(Real Driving Emission). In order to satisfy RDE mode, the new technology to reduce emissions should cover all operating areas including High Load & High Speed. It is a big challenge to reduce NOx on the RDE mode and a lot of DeNOx technologies are being developed. So the new DeNOx technology is needed to cover widened operating area and strict acceleration / deacceleration. The existing LNT(Lean NOx Trap) and Urea SCR(Selective Catalytic Reduction) is necessary to meet the typical NEDC or WLTP, but the RDE mode demands the powerful DeNOx technology. Therefore, the LNT & Urea SCR on DPF was developed through this study.
Technical Paper

A Study of Layout Regarding Integrated Controls on the Steering Wheel

2013-03-25
2013-01-0036
In order to utilize in-vehicle systems efficiently, many vehicles are becoming equipped with integrated controls near the center fascia or the control box. However, the placement of these control systems can cause safety issues and risks due to visual distractions. In this study, we proposed a new integrated touch screen on the steering wheel. For this experiment, a control system was placed on the steering wheel or the center fascia. 15 participants were required to drive while utilizing vent and navigation control tasks regarding four different locations. Three of these locations were based on the steering wheel (center, upper right, lower right) and one location on the center fascia. Afterwards, the task completion time and visual distraction rate of the different locations were measured and compared. The results showed that a touch screen placed on the upper right section of the steering wheel had better performance and lower user discomfort.
Technical Paper

A Study of Low-Friction Road Estimation using an Artificial Neural-Network

2018-04-03
2018-01-0811
Road friction estimation algorithms had been studied for many years because it is very important factor for safety control and fuel efficiency of vehicle. But traditional solutions are hard to adapt in automotive industry because their performance is not sufficient enough and expensive to implement. Therefore, this paper proposes a road friction estimation algorithm based on a trained artificial neural-network which is low cost and robust. The suggested method doesn’t need expensive additional sensors such as optical or lidar sensor, also it shows better performance in real car environment compared to other algorithms based on vehicle dynamics. In this paper, we would describe this algorithm in detail and analyze the test results evaluated in real road conditions.
Technical Paper

A Study on Overcoming Unavailable Backward Driving and a New Fail-Safe Strategy for R-Gearless (P)HEV System

2024-04-09
2024-01-2170
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

A Study on the Method to Manage the Weight and Cost of a Vehicle by Adjusting the Parameters of Styling Profile

2018-04-03
2018-01-1025
Since the fuel efficiency of vehicle has become one of the big issues due to environmental pollution problems, many studies have been conducted on various methods such as improving powertrain performance and aerodynamic performance, reducing the weight of the vehicle and so on. There have been many new attempts to reduce weight but mostly about improving material property. In the case of vehicles sharing the same platform, the weight and cost of vehicle are mainly changed by the exterior styling. But, there is no solution to control the exterior styling in terms of the weight and cost of vehicle, yet. The purpose of this study is to find the way to save the weight and cost of vehicle while achieving the various performance and requirements of vehicle (safety, aerodynamics, driver’s visibility and so on) from exterior styling point of view. We focused on the weight difference of the vehicles that shared the platform and were same overall dimensions.
Journal Article

A Tailgate(Trunk) Control System Based on Acoustic Patterns

2017-03-28
2017-01-1634
When customers use a tailgate (or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human’s rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
Journal Article

Active Booming Noise Control for Hybrid Vehicles

2016-04-05
2016-01-1122
Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.
Journal Article

Adaptive Cruise Control with Collision Avoidance in Multi-Vehicle Traffic Situations

2009-04-20
2009-01-0439
This paper presents a longitudinal control algorithm for an adaptive cruise control (ACC) with collision avoidance (CA) in multiple vehicle traffic situations. The proposed algorithm consists of a multi-target tracking filter, a primary target selection algorithm and an integrated ACC/CA system. The multi-target tracking filter is used to smooth the sensor signal, and makes it possible to apply to a control system. The primary target selection algorithm decides an in-lane target and provides the information to an integrated ACC/CA system in order to drive a subject vehicle smoothly and improve safety in complex traffic situations. Finally, the integrated ACC/CA system computes the desired acceleration. The performance and safety benefits of the multi-vehicle ACC/CA system is investigated via simulations using real data on driving. Simulation results show that the response of multi-vehicle ACC/CA system is more smooth and safer at a change of traffic situations.
Technical Paper

An Experimental Study on Camshaft Impact Noise by Dynamic Coupling of Valve Train and Chain System

2024-04-09
2024-01-2827
To improve the fuel efficiency and satisfy the strict emission regulations, the development of internal combustion engine gets more complicated in both hardware and software perspectives, and the margins for durability and NVH quality become narrower, which could result in poor NVH robustness in harsh engine operating conditions. In this paper, we investigate experimentally the camshaft impact noise mechanism relating the valve train and timing chain forces to detailed motion of the camshaft and the chain tensioner. After the initial investigation of identifying the impact timings and specific engine operating points when the noise occurs, the camshaft orbital motion inside of the sliding bearing is measured and visualized with the proximity sensors with calibration after sensor mounting, in addition to the chain tensioner movements.
Technical Paper

An Investigation into Unified Chassis Control based on Correlation with Longitudinal/Lateral Tire Force Behavior

2009-04-20
2009-01-0438
This paper presents a Unified Chassis Control (UCC) strategy to improve vehicle stability and maneuverability by integrating Electronic Stability Control (ESC) and Active Front Steering (AFS). The UCC architecture consists of two parts: an estimator and a controller. The estimator is designed to estimate longitudinal and lateral tire forces and the controller is designed in two stages, namely, an upper level controller and a lower level controller. The upper level controller, provides the desired yaw moment for vehicle lateral stability by adopting a sliding control method. The lower level controller, provides the integration method of the AFS and ESC strategies for the desired yaw moment and is designed by optimal tire force coordination.
Technical Paper

An Optimized Control Strategy for Parallel Hybrid Electric Vehicle

2003-03-03
2003-01-1329
A systematic process of optimization is suggested to obtain the best control maps for a parallel type hybrid electric vehicle. Taking the fuel consumption as the cost function and driving cycle as part of the constraints, an optimization problem for CVT pulley ratio control and motor torque control can be formulated. The change of the battery charge state between the start and end point of the given driving cycle also works as a constraint. In order to see the effect of various control strategies on system behavior and overall fuel consumption, a simulation model was built to accommodate the functional blocks representing hybrid powertrain subsystem components and corresponding control units.
X