Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D-Semi 1D Coupling for a Complete Simulation of an SCR System

2013-04-08
2013-01-1575
The presented work describes how numerical modeling techniques were extended to simulate a full Selective Catalytic Reduction (SCR) NOx aftertreatement system. Besides predicting ammonia-to-NOX ratio (ANR) and uniformity index (UI) at the SCR inlet, the developed numerical model was able to predict NOx reduction and ammonia slip. To reduce the calculation time due to the complexity of the chemical process and flow field within the SCR, a semi-1D approach was developed and applied to model the SCR catalyst, which was subsequently coupled with a 3D model of the rest of the exhaust system. Droplet depletion of urea water solution (UWS) was modeled by vaporization and thermolysis techniques while ammonia generation was modeled by the thermolysis and hydrolysis method. Test data of two different SCR systems were used to calibrate the simulation results. Results obtained using the thermolysis method showed better agreement with test data compared to the vaporization method.
Technical Paper

3rd Generation Genesis Seat Development

2022-03-29
2022-01-0811
Based on the success of the second-generation Genesis G80 model, Hyundai Motor has declared the independence of Genesis as a luxury car brand in 2015. The third-generation G80 is the representative model of the Genesis brand and has a unique identity of Genesis that can surpass its competitors. In addition, it was necessary to develop seats that were considered not only for ICE but also for the scalability of electric vehicles. A newly formed Genesis organization established the Genesis design philosophy of its own. Four key elements of the design philosophy were comfort, aesthetics, usability and safety. The third-generation Genesis seats incorporate its design philosophy of seat design and new technologies based on comfort, aesthetics, usability, and safety. This paper describes the seat development of the Ergo Motion seat, Rear Seat Relaxtion(Relax + Position), Seat Syling, AVN switch display and PSS(pre-active safety seat )system, which are representative technologies.
Technical Paper

42 Catalytic Reduction of Marine Sterndrive Engine Emissions

2002-10-29
2002-32-1811
A 2001 General Motors 4.3 liter V-6 marine engine was baseline emissions tested and then equipped with catalysts. Emission reduction effects of exhaust gas recirculation (EGR) were also explored. Because of a U.S. Coast Guard requirement that inboard engine surface temperatures be kept below 200°F, the engine's exhaust system, including the catalysts, was water-cooled. Engine emissions were measured using the ISO-8178-E4 5-mode steady-state test for recreational marine engines. In baseline configuration, the engine produced 16.6 g HC+NOx/kW-hr, and 111 g CO/kW-hr. In closed-loop control with catalysts, HC+NOx emissions were reduced by 75 percent to 4.1 g/kW-hr, and CO emissions were reduced by 36 percent to 70 g/kW-hr of CO. The catalyzed engine was then installed in a Sea Ray 190 boat, and tested for water reversion on both fresh and salt water using National Marine Manufacturers Association procedures.
Technical Paper

42-Volt Electric Air Conditioning System Commissioning and Control for a Class-8 Tractor

2004-03-08
2004-01-1478
The electrification of accessories using a fuel cell as an auxiliary power unit reduces the load on the engine and provides opportunities to increase propulsion performance or reduce engine displacement. The SunLine™ Class 8 tractor electric accessory integration project is a United States Army National Automotive Center (NAC™) initiative in partnership with Cummins Inc., Dynetek™ Industries Ltd., General Dynamics C4 Systems, Acumentrics™ Corporation, Michelin North America, Engineered Machine Products (EMP™), Peterbilt™ Motors Company, Modine™ Manufacturing and Masterflux™. Southwest Research Institute is the technical integration contractor to SunLine™ Services Group. In this paper the SunLine™ tractor electric Air Conditioning (AC) system is described and the installation of components on the tractor is illustrated. The AC system has been designed to retrofit into an existing automotive system and every effort was made to maintain OEM components whenever modifications were made.
Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

A BIW Structure Research of Light Weight Vehicle with High Stiffness by Steel

2015-03-10
2015-01-0061
The focus of this paper is to develop an innovative vehicle layout and optimize vehicle body structure with the latest lightweight steel technologies, such as hydro-forming and hot stamping. Our BIW structure achieved a mass savings of 28 kg (−10%) compared to the mass of baseline BIW structure. (Base BIW : MD_Elantra)
Technical Paper

A Comparison of EGR Condensate Composition between EGR and Dedicated-EGR Combustion Strategies

2021-04-06
2021-01-0484
Water injection is an effective method for knock control in spark-ignition engines. However, the requirement of a separate water source and the cost and complexity associated with a fully integrated system creates a limitation of this method to be used in volume production engines. The engine exhaust typically contains 10-15% water vapor by volume which could be condensed and potentially stored for future use. In this study, the exhaust condensate composition was assessed for its use as an effective replacement for distilled water. Specifically, condensate samples were collected pre and post-three-way catalyst (TWC) and analyzed for acidity and composition. The composition of the pre and post-TWC condensates was found to be similar however, the pre-TWC condensate was mildly acidic. The mild acidity has the potential to corrode certain components in the intake air circuit.
Technical Paper

A Comparison of Emissions and Flow Restriction of Thinwall Ceramic Substrates for Low Emission Vehicles

1999-03-01
1999-01-0271
The emission and flow restriction characteristics of three different ceramic substrates with varying wall thickness and cell density (400 cpsi/6.5 mil, 600/4.3, and 600/3.5) are compared. These 106mm diameter substrates were catalyzed with similar amounts of washcoat and fabricated into catalytic converters having a total volume of 2.0 liters. A Pd/Rh catalyst technology was applied at a concentration of 6.65 g/l and a ratio of 20/1. Three sets of converters (two of each type) were aged for 100 hours on an engine dynamometer stand. After aging, the FTP performance of these converters were evaluated on an auto-driver FTP stand using a 2.4L, four-cylinder prototype engine and on a 2.4L, four-cylinder prototype vehicle. A third set of unaged converters was used for cold flow restriction measurements and vehicle acceleration tests.
Technical Paper

A Comprehensive CFD-FEA Conjugate Heat Transfer Analysis for Diesel and Gasoline Engines

2019-04-02
2019-01-0212
As the efforts to push capabilities of current engine hardware to their durability limits increases, more accurate and reliable analysis is necessary to ensure that designs are robust. This paper evaluates a method of Conjugate Heat Transfer (CHT) analysis for a gasoline and a diesel engine that combines combustion Computational Fluid Dynamics (CFD), engine Finite Element Analysis (FEA), and cooling jacket CFD with the goal of obtaining more accurate temperature distribution and heat loss predictions in an engine compared to standard de-coupled CFD and FEA analysis methods. This novel CHT technique was successfully applied to a 2.5 liter GM LHU gasoline engine at 3000 rpm and a 15.0 liter Cummins ISX heavy duty diesel engine operating at 1250 rpm. Combustion CFD simulations results for the gasoline and diesel engines are validated with the experimental data for cylinder pressure and heat release rate.
Technical Paper

A Comprehensive Numerical Approach to Predict Thermal Runaway in Li-Ion Battery Packs

2021-04-06
2021-01-0748
With the increasing level of electrification of on-road, off-road and stationary applications, use of larger lithium-ion battery packs has become essential. These packs require large capital investments on the order of millions of dollars and pose a significant risk of self-annihilation without rigorous safety evaluation and management. Testing these larger battery packs to validate design changes can be cost prohibitive. A reliable numerical simulation tool to predict battery thermal runaway under various abuse scenarios is essential to engineer safety into the battery pack design stage. A comprehensive testing & simulation workflow has been established to calibrate and validate the numerical modeling approach with the test data for each of the individual sub model - electrochemical, internal short circuit and thermal abuse model. A four-equation thermal abuse model was built and validated for lithium-ion 21700 form factor cylindrical cells using NCA cathodes.
Technical Paper

A Conceptual Analysis in the Early Design Stage for the Road-Noise Reduction using FRF-Based Substructuring

2022-03-29
2022-01-0312
NVH analysis based on numerical simulations before actual test vehicle is available becomes common process in the automotive industry. Furthermore, the latest work scope is extending even to conceptual study in the very early design stage, beyond traditional numerical simulations simply using 3-D CAD data. In case when reasonable information is provided at this very early vehicle development stage, a better decision on the design concept would be possible, and subsequent design process can be carried out in more efficient manner. The core of this trend is that it allows us to predict vehicle performance at the conceptual design stage without 3-D CAD data, and then, with this prediction, to suggest meaningful design directions for next stage. From this point of view, FRF-Based Substructuring (FBS) methodology has potential to be used as an appropriate tool for this purpose.
Technical Paper

A Critical Analysis of Traffic Accident Data

1975-02-01
750916
General agreement exists that the ultimate goals of traffic accident research are to reduce fatality, mitigate injury and decrease economic loss to society. Although massive quantities of data have been collected in local, national and international programs, attempts by analysts to use these data to explore ideas or support hypotheses have been met by a variety of problems. Specifically, the coded variables in the different files are not consistent and little information on accident etiology is collected. Examples of the inadequacies of present data in terms of the collected and coded variables are shown. The vehicular, environmental and human (consisting of human factors and injury factors) variables are disproportionately represented in most existing data files in terms of recognized statistical evidence of accident causation. A systems approach is needed to identify critical, currently neglected variables and develop units of measurement and data collection procedures.
Technical Paper

A Development of Aluminum EGR Cooler for Weight Reduction and Fuel Economy

2018-04-03
2018-01-0102
As environmental problems such as global warming are emerging, regulations on automobile exhaust gas are strengthened and various exhaust gas reduction technologies are being developed in various countries in order to satisfy exhaust emission regulations. Exhaust gas recirculation (EGR) technology is a very effective way to reduce nitrogen oxides (NOx) at high combustion temperatures by using EGR coolers to lower the combustion temperature. This EGR cooler has been mass-produced in stainless steel, but it is expensive and heavy. Recently, high efficiency and compactness are required for the EGR cooler to meet the new emission regulation. If aluminum material is applied to the EGR cooler, heat transfer efficiency and light weight can be improved due to high heat transfer coefficient of aluminum compared to conventional stainless steel, but durability is insufficient. Therefore, the aluminum EGR cooler has been developed to enhance performance and durability.
Journal Article

A Development of Energy Management System with Semi-Transparent Solar Roof and Off-Cycle Credit Test Methodology for Solar Power Assisted Automobile.

2017-03-28
2017-01-0388
CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
Technical Paper

A Development of SCR (Selective Catalytic Reduction) Model and Its Applications

2022-03-29
2022-01-0557
A physics-based model for SCR (Selective Catalytic Reduction) was developed based on five independent SGB (Synthetic Gas Bench) tests. There are NH3 adsorption & desorption test, NO oxidation test, NH3 oxidation test, SCR reaction (NOx & NH3) test and SV (Space Velocity) test. To validate the accuracy of SCR model’s prediction, transient reactor tests were conducted at four different input conditions. A newly developed SCR model showed more than 90% prediction accuracy in transient test conditions in view of cumulative NOx. Validation of SCR model was conducted on 1.6L light duty diesel vehicle in the WLTC (Worldwide Harmonized Light vehicles Test Cycle). Based upon this SCR model, vehicle level SCR calibrations used for urea dosing control were made and validated in the emission test cycles like WLTC.
Technical Paper

A Development of Spindle Drive Power Trunk Lid System with Optimizing Operation Noise

2022-03-29
2022-01-0759
The power trunk lid system is a device that automatically opens and closes the trunk lid by motor, for the purpose to improve user’s convenience. This technology was applied only to high-end large cars such as Equus and Genesis. But as preference for high convenience features increases, the scope of application is gradually expanding to semi-large and mid-sized cars. Therefore, the necessity of securing profitability through cost reduction was emerged, and it made us to develop the power trunk lid system by spindle drives. Compared to the conventional swing arm drive type, the spindle drive type may achieve cost savings, lightness and easy of assembly by optimizing the required motor specifications. However, since it uses a planetary gear with high gear ratio and the high rotation speed of the motor, operating noise is relatively large.
Technical Paper

A Development of the Driver IC in LED Rear Combination Lamp for Circuit Standardization

2021-04-06
2021-01-0850
Today, many automakers are using LED lamp sources in exterior lamps to establish brand awareness and introduce specialized lamp designs. These eye-catching LED lamp source solutions require many control functions as the lamp functions are diversified and advanced, and accordingly the requirements for standardization and optimization of controllers are increasing. In particular, our LED rear combination lamps have a variety of LED loads according to the design of the lamp model, the installation position, and the diagnostic regulations, so that the design complexity and the number of specifications of the controller are increased [4]. In recent years, more and more aesthetic designs and new technologies are used by various automakers to optimize their controllers in cooperation with global partners to optimize costs [1].
Technical Paper

A Development of the Model Based Torque Feedback Control with Disturbance Observer for Electric Power Steering System

2019-04-02
2019-01-1233
Electric Power Steering (EPS) needs to meet both functional and stability requirements, it plays significant role in controlling vehicle motion. In the meantime, customers emphasizes natural steering feel which can reflect vehicle motion and road surface information while isolate unwanted external disturbances. In general, conventional EPS control algorithms exert assist torque according to driver torque measured from torque sensor, while maintaining stability using stabilizing compensator. However, there exist significant trade-off between steering feel and stability, because the performances of assist torque control and stabilizing compensator are strongly coupled. In this paper a torque feedback control algorithm for EPS system is proposed in order to overcome the trade-off, and to achieve more natural, robust steering feel.
Technical Paper

A Development of the Prediction and Optimization Tool for Wiper High Speed Performance

2019-03-25
2019-01-1417
In this paper, we focused on the robust wiping performance of high speed driven condition as an important situation for vehicle safety. Frist, we selected appropriate wiper performance parameter to accurately predict its ability not only systematic point but also vehicle point. Second, we obtained parameter sensitivity of wiper high-speed performance using DFSS technique. Third, we developed prediction and optimization tool using commercial program; Excel and Visual Basic. Finally, we improved our tool to compare vehicle test and then modified prediction coefficient for the accuracy of tool. Thus, we proposed a systematic tool to predict wiping performance in high speed vehicle, and successfully obtained efficiency when we developed the new project’s wiper performance.
Technical Paper

A Flexible Multi-Body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

2007-04-16
2007-01-0852
This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of 1∼2mm/sec and frequency of 132mm. First, the simulation is conducted with the same condition as the test.
X