Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Fuel-Dithering Optimization of Efficiency of TWC on Natural Gas IC Engine

2015-04-14
2015-01-1043
Steady-state, transient and dithering characteristics of emission conversion efficiencies of three-way catalysts on natural gas IC engine were investigated experimentally on a single-cylinder CFR engine test bench. Steady-state runs were conducted as references for specific engine emission levels and corresponding catalyst capacities. The steady-state data showed that conversion of HC will be the major problem since conversion of HC was effective only for a very narrow range of exhaust mixture. Unsteady exploration runs with both lean-to-rich and rich-to-lean transitions were conducted. These results were interpreted with a time scale analysis, according to which a qualitative oxygen storage model was proposed featuring the difference between oxygen absorption and desorption rates on the palladium catalysts.
Technical Paper

The Road Towards High Efficiency Argon SI Combustion in a CFR Engine: Cooling the Intake to Sub-Zero Temperatures

2020-04-14
2020-01-0550
Textbook engine thermodynamics predicts that SI (Spark Ignition) engine efficiency η is a function of both the compression ratio CR of the engine and the specific heat ratio γ of the working fluid. In practice the compression ratio of the SI engine is often limited due to “knock”. Knock is in large part the effect of end gases becoming too hot and auto-igniting. Knock results in increase in heat transfer to the walls which negatively affects efficiency. Not to mention damages to the piston. One way to lower the end-gas temperature is to cool the intake gas before inducting it into the combustion chamber. With colder intake gases, higher CR can be deployed, resulting in higher efficiencies. In this regard, we investigated the efficiency of a standard Waukesha CFR engine. The engine is operated in the SI engine mode, and was operated with two differing mixtures at different temperatures.
X