Refine Your Search

Topic

Author

Search Results

Technical Paper

A Discrete-Event Simulation of the NASA Fuel Production Plant on Mars

2017-09-19
2017-01-2017
The National Aeronautics and Space Administration (NASA) is preparing for a manned mission to Mars to test the sustainment of civilization on the planet Mars. This research explores the requirements and feasibility of autonomously producing fuel on Mars for a return trip back to Earth. As a part of NASA’s initiative for a manned trip to Mars, our team’s work creates and analyzes the allocation of resources necessary in deploying a fuel station on this foreign soil. Previous research has addressed concerns with a number individual components of this mission such as power required for fuel station and tools; however, the interactions between these components and the effects they would have on the overall requirements for the fuel station are still unknown to NASA. By creating a baseline discrete-event simulation model in a simulation software environment, the research team has been able to simulate the fuel production process on Mars.
Technical Paper

A Distributed Environment for Analysis of Events Related to Range Safety

2004-11-02
2004-01-3095
This paper features a distributed environment and the steps taken to incorporate the Virtual Range model into the Virtual Test Bed (VTB) infrastructure. The VTB is a prototype of a virtual engineering environment to study operations of current and future space vehicles, spaceports, and ranges. The High-Level Architecture (HLA) is the main environment. The VTB/HLA implementation described here represents different systems that interact in the simulation of a Space Shuttle liftoff. An example implementation displays the collaboration of a simplified version of the Space Shuttle Simulation Model and a simulation of the Launch Scrub Evaluation Model.
Technical Paper

A Distributed Environment for Spaceports

2004-11-02
2004-01-3094
This paper describes the development of a distributed environment for spaceport simulation modeling. This distributed environment is the result of the applications of the High-Level Architecture (HLA) and integration frameworks based on software agents and XML. This distributed environment is called the Virtual Test Bed (VTB). A distributed environment is needed due to the nature of the different models needed to represent a spaceport. This paper provides two case studies: one related to the translation of a model from its native environment and the other one related to the integration of real-time weather.
Technical Paper

A Distributed Simulation of a Martian Fuel Production Facility

2017-09-19
2017-01-2022
The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an unmanned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
Technical Paper

A Heat Pipe Assisted Air-Cooled Rotary Wankel Engine for Improved Durability, Power and Efficiency

2014-09-16
2014-01-2160
In this paper, we address the thermal management issues which limit the lifespan, specific power and overall efficiency of an air-cooled rotary Wankel engine used in Unmanned Air Vehicles (UAVs). Our goal is to eliminate the hot spots and reduce the temperature gradients in the engine housing and side plates by aggressive heat spreading using heat pipes. We demonstrate by simulation that, for a specific power requirement, with heat spreading and more effective heat dissipation, thermal stress and distortion can be significantly reduced, even with air cooling. The maximum temperature drop was substantial, from 231°C to 129°C. The temperature difference (measure of temperature uniformity) decreased by 8.8 times (from 159°C to 18°C) for a typical UAV engine. Our heat spreaders would not change the frontal area of the engine and should have a negligible impact on the installed weight of the propulsion assembly.
Technical Paper

A Holistic Approach to Mitigating Warpage in Fiber-Reinforced Plastic Injection Molding for Automotive Applications

2024-04-09
2024-01-2358
Fiber-reinforced plastics (FRPs), produced through injection molding, are increasingly preferred over steel in automotive applications due to their lightweight, moldability, and excellent physical properties. However, the expanding use of FRPs presents a critical challenge: deformation stability. The occurrence of warping significantly compromises the initial product quality due to challenges in part mounting and interference with surrounding parts. Consequently, mitigating warpage in FRP-based injection parts is paramount for achieving high-quality parts. In this study, we present a holistic approach to address warpage in injection-molded parts using FRP. We employed a systematic Design of Experiments (DOE) methodology to optimize materials, processes, and equipment, with a focus on reducing warpage, particularly for the exterior part. First, we optimized material using a mixture design in DOE, emphasizing reinforcements favorable for warpage mitigation.
Journal Article

A Methodology on Guiding Effectiveness-Focused Training of the Weapon Operator Using Big Data and VC Simulations

2017-09-19
2017-01-2018
Operator training using a weapon in a real-world environment is risky, expensive, time-consuming, and restricted to the given environment. In addition, governments are under intense scrutiny to provide security, yet they must also strive for efficiency and reduce spending. In other words, they must do more with less. Virtual simulation, is usually employed to solve these limitations. As the operator is trained to maximize weapon effectiveness, the effectiveness-focused training can be completed in an economical manner. Unfortunately, the training is completed in limited scenarios without objective levels of training factors for an individual operator to optimize the weapon effectiveness. Thus, the training will not be effective. For overcoming this problem, we suggest a methodology on guiding effectiveness-focused training of the weapon operator through usability assessments, big data, and Virtual and Constructive (VC) simulations.
Technical Paper

A Model-Based Fault Diagnostic and Control System for Spacecraft Power

1992-08-03
929099
This paper describes a model-based approach to diagnosing electrical faults in electrical power systems. Until recently, model-based reasoning has only been applied to physical systems with static, persistent states, and with parts whose behavior can be expressed combinatorially, such as digital circuits. Our research is one of a handful of recent efforts to apply model-based reasoning to more complex systems, those whose behavior is difficult or impossible to express combinatorially, and whose states change continuously over time. The chosen approach to representation is loosely based on the idea of the equation network proposed in [6]. This requires a more complex component and behavior model than for simpler physical devices. The resulting system is being tested on fault data from the SSM/PMAD power system breadboard being developed at NASA-MSFC [9].
Journal Article

A Physics Based Methodology for the Estimation of Tire Performance on Ice and Snow

2023-04-11
2023-01-0019
The automotive industry’s journey towards fully autonomous vehicles brings more and more vehicle control systems. Additionally, the reliability and robustness of all these systems must be guaranteed for all road and weather conditions before release into the market. However, the ever-increasing number of such control systems, in combination with the number of road and weather conditions, makes it unfeasible to test all scenarios in real life. Thus, the performance and robustness of these systems needs to be proven virtually, via vehicle simulations. The key challenge for performing such a range of simulations is that the tire performance is significantly affected by the road/weather conditions. An end user must therefore have access to the corresponding tire models. The current solution is to test tires under all road surfaces and operating conditions and then derive a set of model parameters from measurements.
Technical Paper

A Study on Fatigue Life Prediction Technique considering Bead Notch Shape in Arc Welding of Steel Components under Multi-Axial Load

2024-04-09
2024-01-2257
This study deals with the fatigue life prediction methodology of welding simulation components involving arc welding. First, a method for deriving the cyclic deformation and fatigue properties of the weld metal (that is also called ER70S-3 in AWS, American Welding Standard) is explained using solid bar specimens. Then, welded tube specimens were used with two symmetric welds and subjected to axial, torsion, and combined in-phase and out-of-phase axial-torsion loads. In most previous studies the weld bead’s start/stop were arbitrarily removed by overlapping the starting and stop point. Because it can reduce fatigue data scatter. However, in this study make the two symmetric weld’s start/stops exposed to applying load. Because the shape of the weld bead generated after the welding process can act as a notch (Ex. root notch at weld start / Crater at weld stop) to an applied stress. Accordingly, they were intentionally designed to cause stress concentrations on start/stops.
Technical Paper

A Study on a Prognostics and Health Management (PHM) Based on Fracture Mechanics Using Deep Learning

2024-04-09
2024-01-2248
This paper presents deep learning-based prognostics and health management (PHM) for predicting fractures of an electric propulsion (eP) drivetrain system using real-time CAN signals. The deep learning algorithm, based on autoencoders, resamples time-series signals and converts them into 2D images using recurrence plots (RP). Subsequently, through unsupervised learning of DeepSVDD, it detects anomalies in the converted 2D images and predicts the failure of the system in real-time. Also, reliability analysis based on fracture mechanics was performed using the detected signals and big data. In particular, the severity of the eP drivetrain system is proportional to the maximum shear stress (τmax) in terms of linear elastic fracture mechanics (LEFM) and can be calculated by summarizing the relationship between cracks (a) and the stress intensity factor (KIII).
Journal Article

An Architecture for Monitoring and Anomaly Detection for Space Systems

2013-09-17
2013-01-2090
Complex aerospace engineering systems require innovative methods for performance monitoring and anomaly detection. The interface of a real-time data stream to a system for analysis, pattern recognition, and anomaly detection can require distributed system architectures and sophisticated custom programming. This paper presents a case study of a simplified interface between Programmable Logic Controller (PLC) real-time data output, signal processing, cloud computing, and tablet systems. The discussed approach consists of three parts: First, the connectivity of real-time data from PLCs to the signal processing algorithms, using standard communication technologies. Second, the interface of legacy routines, such as NASA's Inductive Monitoring System (IMS), with a hybrid signal processing system. Third, the connectivity and interaction of the signal processing system with a wireless and distributed tablet, (iPhone/iPad) in a hybrid system configuration using cloud computing.
Technical Paper

An advanced tire modeling methodology considering road roughness for chassis control system development

2024-04-09
2024-01-2317
As the automotive industry accelerates its virtual engineering capabilities, there is a growing requirement for increased accuracy across a broad range of vehicle simulations. Regarding control system development, utilizing vehicle simulations to conduct ‘pre-tuning’ activities can significantly reduce time and costs. However, achieving an accurate prediction of, e.g., stopping distance, requires accurate tire modeling. The Magic Formula tire model is often used to effectively model the tire response within vehicle dynamics simulations. However, such models often: i) represent the tire driving on sandpaper; and ii) do not accurately capture the transient response over a wide slip range. In this paper, a novel methodology is developed using the MF-Tyre/MF-Swift tire model to enhance the accuracy of ABS braking simulations.
Technical Paper

Analysis of Leakage Magnetic Field and Reducing Method in Bi-Directional Wireless Charging System of Electric Vehicle

2024-04-09
2024-01-2029
This paper analyzes the leakage magnetic field generated by the Bi-Directional wireless charging system of Electric Vehicle(EV) and confirms the effect of the shielding coil in the Bi-Directional wireless charging system. In particular, in EV using the Inductive Power Transfer(IPT) method, the effective shielding coil position is proposed by analyzing the contribution of the leakage magnetic field of the Ground Assembly(GA) coil and the Vehicle Assembly(VA) coil according to the power transfer direction. Simulations were conducted using the WPT3/Z2 model of the standard SAE J2954, and it was confirmed that the GA coil contributed more to the leakage magnetic field due to the relatively large size compared to the VA coil regardless of power transfer direction.
Technical Paper

Benefits of Octane-On-Demand in an E10-Gasoline Engine Vehicle Using an On-Board Fuel Separator

2022-03-29
2022-01-0424
Knock in gasoline engines at higher loads is a significant constraint on torque and efficiency. The anti-knock property of a fuel is closely related to its research octane number (RON). Ethanol has superior RON compared to gasoline and thus has been commonly used to blend with gasoline in commercial gasolines. However, as the RON of a fuel is constant, it has not been used as needed in a vehicle. To wisely use the RON, an On-Board Separation (OBS) unit that separates commercial gasoline with ethanol content into high-octane fuel with high ethanol fraction and a lower octane remainder has been developed. Then an onboard Octane-on-demand (OOD) concept uses both fuels in varying proportion to provide to the engine a fuel blend with just enough RON to meet the ever changing octane requirement that depends on driving pattern.
Technical Paper

Case for a Multidisciplinary Modeling Platform for Space Launch Risk Analysis

2007-09-17
2007-01-3864
With the development and licensing of inland, state-owned spaceports, and the ongoing development of several new reusable launch vehicles (RLV), the space launch industry is undergoing a significant transformation. As a result, there is a need to reevaluate current launch risk analysis methodologies and practices, which so far have revolved around the conservative casualty expectation analysis developed in the 1950s. Furthermore, an important aspect of launch risk analysis which gives rise to its complexity is its multidisciplinary nature. In analyzing such risk, the physics of and interactions between the varieties of hazards produced by launch vehicles breakups must be captured, modeled and, their effects analyzed. In this paper we discuss how a well-designed multidisciplinary modeling and analysis platform could be a significant step toward reducing the complexity just mentioned.
Technical Paper

Chaos Analysis on In-Cylinder Pressure Measurements

1994-12-01
942486
Peak pressure, crank angle and induction pressure were measured in cylinder number one of a Ford 4.6 liter Modular engine. Chaos analysis was conducted on these measurements and the phase, waveform, Poincare, and FFT plots are presented. These plots show conclusively that the pressure fluctuation inside a cylinder is a broadband chaos.
Technical Paper

Characterization of High-Tumble Flow Effects on Early Injection for a Lean-Burn Gasoline Engine

2023-04-11
2023-01-0238
The influence of early induction stroke direct injection on late-cycle flows was investigated for a lean-burn, high-tumble, gasoline engine. The engine features side-mounted injection and was operated at a moderate load (8.5 bar brake mean effective pressure) and engine speed (2000 revolutions per minute) condition representative of a significant portion of the duty cycle for a hybridized powertrain system. Thermodynamic engine tests were used to evaluate cam phasing, injection schedule, and ignition timing such that an optimal balance of acceptable fuel economy, combustion stability, and engine-out nitrogen oxide (NOx) emissions was achieved. A single cylinder of the 4-cylinder thermodynamic engine was outfitted with an endoscope that enabled direct imaging of the spark discharge and early flame development.
Technical Paper

Development of Exmani-Heat Protector to Improve Sound Absorption Using New Perforated Thin Aluminum Plate

2020-04-14
2020-01-0405
This paper discusses a technology for reducing the gas flow noise generated from the noise of the vehicle, especially the exhaust system. The primary function of the heat protector is thermal shutdown. However, due to the increase in engine power, downsizing of engines, and the rise of consumer's eye level, solutions about noise are now emphasized. To meet these needs, a new concept of heat protector manufacturing technology is required. A key component of this technology is the manufacturing technology of three-ply composite board which can absorb sound from the existing sound insulation aluminum heat protector. For this purpose, mold technology for punching aluminum sheet, optimization technique for punching effect, specific pattern design for high-strength/high-forming, sound absorbing material selection and composite sheet molding technology, and noise vibration reduction mounting technology for plate joining were developed.
Technical Paper

Development of a New Flammability Test Method: Enabling Material-Level Evaluation of Polymeric Materials for Electric Vehicle Battery Enclosures

2022-03-29
2022-01-0714
The need to reduce weight and cost of battery systems for electric vehicles has led to continued interest in metal-to-plastic substitution and mixed-material designs for battery enclosures. However, the ever-increasing performance requirements of such systems pose a challenge for plastic materials to meet. In an effort to design a cost-effective, lightweight next-generation battery enclosure while meeting the latest requirements, a new thermal runaway test method was developed, and several materials were screened. The objectives of this development project were twofold. The first was to develop a small-scale test method representative of real-world thermal runaway conditions that could be used early in the design process.
X