Refine Your Search

Topic

Author

Search Results

Technical Paper

A Development of the Purge Controller Design Based on H2 Concentration Estimator in Fuel Cell Electric Vehicle

2020-04-14
2020-01-0854
The optimal control of anode H2 concentration in fuel cell is the key performance parameter for efficiency and durability of the fuel cell electric vehicle. Implementation of H2 concentration sensor in fuel processing system is the best option to achieve the optimal control operation, but the vulnerability of the chip in H2 concentration sensor to the moisture has not been overcome and no H2 concentration sensor for vehicle application is present in the world so far. Due to the immaturity of the H2 concentration sensor, a number of researches have been being made to keep the H2 concentration in the anode at certain level without H2 concentration sensors. However the effectiveness of those technologies has not been good to meet the design specification in all the operating range of the various driving cycles and environmental condition.
Technical Paper

A Distributed Environment for Analysis of Events Related to Range Safety

2004-11-02
2004-01-3095
This paper features a distributed environment and the steps taken to incorporate the Virtual Range model into the Virtual Test Bed (VTB) infrastructure. The VTB is a prototype of a virtual engineering environment to study operations of current and future space vehicles, spaceports, and ranges. The High-Level Architecture (HLA) is the main environment. The VTB/HLA implementation described here represents different systems that interact in the simulation of a Space Shuttle liftoff. An example implementation displays the collaboration of a simplified version of the Space Shuttle Simulation Model and a simulation of the Launch Scrub Evaluation Model.
Technical Paper

A Distributed Environment for Spaceports

2004-11-02
2004-01-3094
This paper describes the development of a distributed environment for spaceport simulation modeling. This distributed environment is the result of the applications of the High-Level Architecture (HLA) and integration frameworks based on software agents and XML. This distributed environment is called the Virtual Test Bed (VTB). A distributed environment is needed due to the nature of the different models needed to represent a spaceport. This paper provides two case studies: one related to the translation of a model from its native environment and the other one related to the integration of real-time weather.
Technical Paper

A Distributed Simulation of a Martian Fuel Production Facility

2017-09-19
2017-01-2022
The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an unmanned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
Technical Paper

A Holistic Approach to Mitigating Warpage in Fiber-Reinforced Plastic Injection Molding for Automotive Applications

2024-04-09
2024-01-2358
Fiber-reinforced plastics (FRPs), produced through injection molding, are increasingly preferred over steel in automotive applications due to their lightweight, moldability, and excellent physical properties. However, the expanding use of FRPs presents a critical challenge: deformation stability. The occurrence of warping significantly compromises the initial product quality due to challenges in part mounting and interference with surrounding parts. Consequently, mitigating warpage in FRP-based injection parts is paramount for achieving high-quality parts. In this study, we present a holistic approach to address warpage in injection-molded parts using FRP. We employed a systematic Design of Experiments (DOE) methodology to optimize materials, processes, and equipment, with a focus on reducing warpage, particularly for the exterior part. First, we optimized material using a mixture design in DOE, emphasizing reinforcements favorable for warpage mitigation.
Journal Article

A Methodology on Guiding Effectiveness-Focused Training of the Weapon Operator Using Big Data and VC Simulations

2017-09-19
2017-01-2018
Operator training using a weapon in a real-world environment is risky, expensive, time-consuming, and restricted to the given environment. In addition, governments are under intense scrutiny to provide security, yet they must also strive for efficiency and reduce spending. In other words, they must do more with less. Virtual simulation, is usually employed to solve these limitations. As the operator is trained to maximize weapon effectiveness, the effectiveness-focused training can be completed in an economical manner. Unfortunately, the training is completed in limited scenarios without objective levels of training factors for an individual operator to optimize the weapon effectiveness. Thus, the training will not be effective. For overcoming this problem, we suggest a methodology on guiding effectiveness-focused training of the weapon operator through usability assessments, big data, and Virtual and Constructive (VC) simulations.
Technical Paper

A Model-Based Fault Diagnostic and Control System for Spacecraft Power

1992-08-03
929099
This paper describes a model-based approach to diagnosing electrical faults in electrical power systems. Until recently, model-based reasoning has only been applied to physical systems with static, persistent states, and with parts whose behavior can be expressed combinatorially, such as digital circuits. Our research is one of a handful of recent efforts to apply model-based reasoning to more complex systems, those whose behavior is difficult or impossible to express combinatorially, and whose states change continuously over time. The chosen approach to representation is loosely based on the idea of the equation network proposed in [6]. This requires a more complex component and behavior model than for simpler physical devices. The resulting system is being tested on fault data from the SSM/PMAD power system breadboard being developed at NASA-MSFC [9].
Journal Article

A Physics Based Methodology for the Estimation of Tire Performance on Ice and Snow

2023-04-11
2023-01-0019
The automotive industry’s journey towards fully autonomous vehicles brings more and more vehicle control systems. Additionally, the reliability and robustness of all these systems must be guaranteed for all road and weather conditions before release into the market. However, the ever-increasing number of such control systems, in combination with the number of road and weather conditions, makes it unfeasible to test all scenarios in real life. Thus, the performance and robustness of these systems needs to be proven virtually, via vehicle simulations. The key challenge for performing such a range of simulations is that the tire performance is significantly affected by the road/weather conditions. An end user must therefore have access to the corresponding tire models. The current solution is to test tires under all road surfaces and operating conditions and then derive a set of model parameters from measurements.
Technical Paper

A Research on Kinematic Optimization of Auto Flush Door Handle System

2020-04-14
2020-01-0623
Today, many car manufacturers and their suppliers are very interested in power-operated door handles, known as auto flush door handles. These handles have a distinguishing feature in terms of the way they operate. They are hidden in door skins and deployed automatically when users need to open the door. It is obvious that it is a major exterior styling point that makes customers interested in the vehicles that apply it. To make this auto flush door handle, however, there lie difficulties. First, because there is no sufficient space inside a door, applying these handles can be a constraint in exterior design unless the structures of them are kinematic optimized. The insufficient space can also cause problems in appearance of the handles when they are deployed. The purpose of this study is to establish the kinematic system of auto flush door handle to overcome the exterior handicaps such as the excessive exposure of the internal area on the deployed position.
Technical Paper

A Study on a Prognostics and Health Management (PHM) Based on Fracture Mechanics Using Deep Learning

2024-04-09
2024-01-2248
This paper presents deep learning-based prognostics and health management (PHM) for predicting fractures of an electric propulsion (eP) drivetrain system using real-time CAN signals. The deep learning algorithm, based on autoencoders, resamples time-series signals and converts them into 2D images using recurrence plots (RP). Subsequently, through unsupervised learning of DeepSVDD, it detects anomalies in the converted 2D images and predicts the failure of the system in real-time. Also, reliability analysis based on fracture mechanics was performed using the detected signals and big data. In particular, the severity of the eP drivetrain system is proportional to the maximum shear stress (τmax) in terms of linear elastic fracture mechanics (LEFM) and can be calculated by summarizing the relationship between cracks (a) and the stress intensity factor (KIII).
Technical Paper

A Study on the Correlation between Heat-Treatment Microstructure and Mechanical Properties of Additive Manufactured Al-Si-Mg Alloy with Bulk and Lattice Structure for Weight Reduction of Vehicle Parts and Application of Shock Absorbing Regions

2024-04-09
2024-01-2574
This study delves into the microstructural and mechanical characteristics of AlSi10Mg alloy produced through the Laser Powder Bed Fusion (L-PBF) method. The investigation identified optimal process parameters for AlSi10Mg alloy based on Volume Energy Density (VED). Manufacturing conditions in the L-PBF process involve factors like laser power, scan speed, hatching distance, and layer thickness. Generally, high laser power may lead to spattering, while low laser power can result in lack-of-fusion areas. Similarly, high scan speeds may cause lack-of-fusion, and low scan speeds can induce spattering. Ensuring the quality of specimens and parts necessitates optimizing these process parameters. To address the low elongation properties in the as-built condition, heat treatment was employed. The initial microstructure of AlSi10Mg alloy in its as-built state comprises a cell structure with α-Al cell walls and eutectic Si.
Journal Article

An Architecture for Monitoring and Anomaly Detection for Space Systems

2013-09-17
2013-01-2090
Complex aerospace engineering systems require innovative methods for performance monitoring and anomaly detection. The interface of a real-time data stream to a system for analysis, pattern recognition, and anomaly detection can require distributed system architectures and sophisticated custom programming. This paper presents a case study of a simplified interface between Programmable Logic Controller (PLC) real-time data output, signal processing, cloud computing, and tablet systems. The discussed approach consists of three parts: First, the connectivity of real-time data from PLCs to the signal processing algorithms, using standard communication technologies. Second, the interface of legacy routines, such as NASA's Inductive Monitoring System (IMS), with a hybrid signal processing system. Third, the connectivity and interaction of the signal processing system with a wireless and distributed tablet, (iPhone/iPad) in a hybrid system configuration using cloud computing.
Technical Paper

An advanced tire modeling methodology considering road roughness for chassis control system development

2024-04-09
2024-01-2317
As the automotive industry accelerates its virtual engineering capabilities, there is a growing requirement for increased accuracy across a broad range of vehicle simulations. Regarding control system development, utilizing vehicle simulations to conduct ‘pre-tuning’ activities can significantly reduce time and costs. However, achieving an accurate prediction of, e.g., stopping distance, requires accurate tire modeling. The Magic Formula tire model is often used to effectively model the tire response within vehicle dynamics simulations. However, such models often: i) represent the tire driving on sandpaper; and ii) do not accurately capture the transient response over a wide slip range. In this paper, a novel methodology is developed using the MF-Tyre/MF-Swift tire model to enhance the accuracy of ABS braking simulations.
Technical Paper

Analysis of Leakage Magnetic Field and Reducing Method in Bi-Directional Wireless Charging System of Electric Vehicle

2024-04-09
2024-01-2029
This paper analyzes the leakage magnetic field generated by the Bi-Directional wireless charging system of Electric Vehicle(EV) and confirms the effect of the shielding coil in the Bi-Directional wireless charging system. In particular, in EV using the Inductive Power Transfer(IPT) method, the effective shielding coil position is proposed by analyzing the contribution of the leakage magnetic field of the Ground Assembly(GA) coil and the Vehicle Assembly(VA) coil according to the power transfer direction. Simulations were conducted using the WPT3/Z2 model of the standard SAE J2954, and it was confirmed that the GA coil contributed more to the leakage magnetic field due to the relatively large size compared to the VA coil regardless of power transfer direction.
Technical Paper

Characterization of High-Tumble Flow Effects on Early Injection for a Lean-Burn Gasoline Engine

2023-04-11
2023-01-0238
The influence of early induction stroke direct injection on late-cycle flows was investigated for a lean-burn, high-tumble, gasoline engine. The engine features side-mounted injection and was operated at a moderate load (8.5 bar brake mean effective pressure) and engine speed (2000 revolutions per minute) condition representative of a significant portion of the duty cycle for a hybridized powertrain system. Thermodynamic engine tests were used to evaluate cam phasing, injection schedule, and ignition timing such that an optimal balance of acceptable fuel economy, combustion stability, and engine-out nitrogen oxide (NOx) emissions was achieved. A single cylinder of the 4-cylinder thermodynamic engine was outfitted with an endoscope that enabled direct imaging of the spark discharge and early flame development.
Technical Paper

Developing a Car to Meet New Pass-By Noise Requirements using Simulation and Testing

2015-06-15
2015-01-2319
A new pass-by noise test method has been introduced, in which engine speeds and loads are reduced (compared to the old test method) to better reflect real world driving behavior. New noise limits apply from 1 July 2016, and tighten by up to 4dB by 2026. The new test method is recognized internationally, and it is anticipated that the limits will also be adopted in most territories around the world. To achieve these tough new pass-by noise requirements, vehicle manufacturers need to address several important aspects of their products. Vehicle performance is critical to the test method, and is controlled by the full load engine torque curve, speed of response to accelerator pedal input, transmission type, overall gear ratios, tire rolling radius, and resistance due to friction and aerodynamic drag. Noise sources (exhaust, intake, powertrain, driveline, tires) and vehicle noise insulation are critical to the noise level radiated to the far-field.
Technical Paper

Development and Application of Advanced CFD Method to Optimize the Spool Valve

2011-10-06
2011-28-0127
A new numerical method is developed to predict the movement of a valve induced by the flow-induced force and pressure field around a valve. It solves the governing equations of fluid dynamics coupled with the motion equation of the valve. We apply this method to predict the motion of a spool valve in a valve body of an automatic transmission. In addition, the effectiveness of design parameters is found to achieve the design goal that reduce the discharge flow rate and flow-induced force. Finally, the optimized design of valve with better performance is suggested.
Technical Paper

Development of a New Flammability Test Method: Enabling Material-Level Evaluation of Polymeric Materials for Electric Vehicle Battery Enclosures

2022-03-29
2022-01-0714
The need to reduce weight and cost of battery systems for electric vehicles has led to continued interest in metal-to-plastic substitution and mixed-material designs for battery enclosures. However, the ever-increasing performance requirements of such systems pose a challenge for plastic materials to meet. In an effort to design a cost-effective, lightweight next-generation battery enclosure while meeting the latest requirements, a new thermal runaway test method was developed, and several materials were screened. The objectives of this development project were twofold. The first was to develop a small-scale test method representative of real-world thermal runaway conditions that could be used early in the design process.
Technical Paper

Development of the Multi-Resolution Modeling Environment through Aircraft Scenarios

2018-10-30
2018-01-1923
Multi-Resolution Modeling (MRM) is one of the key technologies for building complex and large-scale simulations using legacy simulators. MRM has been developed continuously, especially in military fields. MRM plays a crucial role to describe the battlefield and gathering the desired information efficiently by linking various levels of resolution. The simulation models interact across different local and/or distance area networks using the High Level Architecture (HLA) regardless of their operating systems and hardware. The HLA is a standard architecture developed by the US Department of Defense (DoD) and is meant to create interoperability among different types of simulators. Therefore, MRM implementations are very dependent on Interoperability and Composability. This paper summarizes the definition of MRM-related terminology and proposes a basic form of MRM system using Commercial Off-The-Shelf (COTS) simulators and HLA.
Technical Paper

Development of ‘Motion-Sensor Moustick’ Controller and A Study of Usability Improvement While Driving

2012-04-16
2012-01-0038
This ‘Motion-Sensor Moustick’ is a sort of new concept control device as if a combination of PC mouse and joystick. It has three simple buttons and a haptic wheel designed for a faster and easier use to learn the vehicle infotainment functions. In addition it has a motion sensor to call a menu via hand approach to change media channels or to display status with just a driver's hand motion within a certain distance. Also this development includes a new concept GUI(graphical user interface) which is compatible with the ‘Moustick’ device. This development could be very helpful to use a car infotainment system.
X