Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Euro VII and Beyond with Hydrogen Combustion for Commercial Vehicle Applications: From Concept to Series Development

2021-09-21
2021-01-1196
One challenge for the development of commercial vehicles is the reduction of CO2 greenhouse, where hydrogen can help to reduce the fleet CO2. For instance, in Europe a drop in fleet consumption of 15% and 30% is set as target by the regulation until 2025 and 2030. Another challenge is EURO VII in EU or even already approved CARB HD Low NOx Regulation in USA, not only for Diesel but also for hydrogen combustion engines. In this study, first the requirements for the combustion and after-treatment system of a hydrogen engine are defined based on future emission regulations. The major advantages regarded to hydrogen combustion are due to the wide range of flammability and very high flame speed numbers compared to other fossil based fuels. Thus, it can be well used for lean burn combustion with much better fuel efficiency and very low NOx emissions with an ultra lean combustion. A comprehensive experimental investigation is performed on a HD 2 L single-cylinder engine.
Technical Paper

Hybrid Physical and Machine Learning-Oriented Modeling Approach to Predict Emissions in a Diesel Compression Ignition Engine

2021-04-06
2021-01-0496
The development and calibration of modern combustion engines is challenging in the area of continuously tightening emission limits and the necessity for meeting real driving emissions regulations. A focus is on the knowledge of the internal engine processes and the determination of pollutants formations in order to predict the engine emissions. A physical model-based development provides an insight into hardly measurable phenomena properties and is robust against changing input data. With increasing modeling depth the required computing capacities increase. As an alternative to physical modeling, data-driven machine learning methods can be used to enable high-performance modeling accuracy. However, these are dependent on the learned data. To combine the performance and robustness of both types of modeling a hybrid application of data-driven and physical models is developed in this paper as a grey box model for the exhaust emission prediction of a commercial vehicle diesel engine.
X