Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Cold Start Simulation and Test on DISI Engines Utilizing a Multi-Zone Vaporization Approach

2012-04-16
2012-01-0402
Recent years have witnessed a dramatic increase in global ethanol production, while cellulosic feedstock or the algae-based production approach make more sustainable ethanol production foreseeable in many countries. The ethanol produced will increasingly penetrate the markets not only as blending component, but also as main fuel component, boosting demand for flex-fuel vehicles. One of the main challenges for flex-fuel vehicles is the cold start due to the poor vapor pressure of ethanol. This is detrimental to starting capability in DISI engines in particular, with increased cylinder wall wetting causing higher oil dilution. The most efficient solution for DISI engines is a smart injection strategy, enabling fuel vaporization during injection in the compression stroke. But this requires optimum injection parameters such as injection timing, split ratio and rail pressure.
Technical Paper

EGR Cooler Fouling Reduction: A New Method for Assessment in Early Engine Development Phase

2022-03-29
2022-01-0589
High pressure EGR provides NOx emission reduction even at low exhaust temperatures. To maintain a safe EGR system operation over a required lifetime, the EGR cooler fouling must not exceed an allowable level, even if the engine is operated under worst-case conditions. A reliable fouling simulation model represents a valuable tool in the engine development process, which validates operating and calibration strategies regarding fouling tendency, helping to avoid fouling issues in a late development phase close to series production. Long-chained hydrocarbons in the exhaust gas essentially impact the fouling layer formation. Therefore, a simulation model requires reliable input data especially regarding mass flow of long-chained hydrocarbons transported into the cooler. There is a huge number of different hydrocarbon species in the exhaust gas, but their individual concentration typically is very low, close to the detection limit of standard in-situ measurement equipment like GC-MS.
X