Refine Your Search

Topic

Author

Search Results

Journal Article

A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry

2009-04-20
2009-01-0678
More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach.
Technical Paper

A 3WCC Global Kinetic Model: A Calibration Method Using Laboratory Scale and Engine Test Bench Experiments

2008-04-14
2008-01-0453
A 3 way catalytic converter (3WCC) model based on a global kinetic model was developed and validated against laboratory scale and engine test bench experiments. Various equivalence ratios and temperatures were tested. A methodology was finalized and applied to calibrate the kinetic constants. Laboratory scale experiments were first used to characterize the reaction mechanism during light-off, including the way reduction and oxidation reactions begin and compete with each other when temperature increases. The numerical results are in good agreement with the laboratory scale light-off results. Also, when adapted to simulate the engine test bench experiments, the model is able to correctly reproduce both the light-off tests and the 3WCC conversion efficiency evolution versus equivalence ratio. A calibration method in two steps was thus established and successfully used. The combination of modeling with experimental work appeared to be a powerful tool to determine the reaction mechanism.
Technical Paper

A New 0D Approach for Diesel Combustion Modeling Coupling Probability Density Function with Complex Chemistry

2006-10-16
2006-01-3332
The model presented in this paper is an original contribution for two main mechanisms involved in a Diesel combustion chamber: the micro-mixing and the combustion heat release. The micro-mixing phenomenon is modelled thanks to the presumed probability density function theory adapted to the 0D combustion modeling issues in order to take into account the stratification of air / fuel ratio around the spray. The combustion heat release is obtained from complex chemistry look-up tables. These tables are issued from a dedicated use of the Flame Prolongation of ILDM theory and allow a large range of combustion conditions since it includes high EGR rates. Moreover, the spray model including evaporation and turbulent macro-mixing is based on the well-known Siebers theory.
Technical Paper

A Study of Combustion Structure and Implications on Post-Oxidation Under Homogeneous and Stratified Operation in a DISI Engine

2006-04-03
2006-01-1262
An experimental investigation into the structure and flame propagation characteristics of stratified and homogeneous combustion has been performed in an optically-accessible, direct-injection spark ignition (DISI) engine using OH planar laser-induced fluorescence (PLIF) imaging. Homogeneous and stratified operation was achieved by employing either early or late injection timing strategies during the intake or compression stroke respectively. Planar LIF OH images obtained revealed that for stratified operation, the 3D structure of the combustion zone is highly inhomogeneous and is predominantly due to high fuel concentration gradients which are formed as a result of local fuel mixture stratification. The images reveal a combustion structure which suggests that the flame propagation pathway is ultimately determined by the presence of these local fuel mixture inhomogeneities.
Technical Paper

A Study of Mixture Formation in Direct Injection Diesel Like Conditions Using Quantitative Fuel Concentration Visualizations in a Gaseous Fuel Jet

2002-05-06
2002-01-1632
Quantitative fuel concentration visualizations are carried out to study the mixing process between fuel and air in Direct Injection (DI) Diesel like conditions, and generate high quality data for the validation of mixing models. In order to avoid the particular complication connected with fuel droplets, a gaseous fuel jet is investigated. Measurements are performed in a high-pressure chamber that can provide conditions similar to those in a diesel engine. A gas injection system able to perform injections in a high-pressure chamber with a good control of the boundary conditions is chosen and characterized. Mass flow rates typical of DI Diesel injection are reproduced. A Laser Induced Fluorescence technique requiring the mixing at high pressure of the fluorescent tracer, biacetyl, with the gaseous fuel, methane, is developed. This experimental technique is able to provide quantitative measurement of fuel concentration in high-pressure jets.
Technical Paper

An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation

2002-03-04
2002-01-1120
KIFP, an hexahedral unstructured version of KIVA-MB (KMB), the current CFD code for engines at IFP, has been developed. Based on KIVA algorithms (finite volume on staggered grids, time-splitting, SIMPLE loop, sub-cycled advection…), the new solver has been built step by step with a strong control on the numerical results. This paper shows the different phases of this work. The numerical approaches and developments are discussed. Several moving grids algorithms have been tested without the flow and results are presented. The flow with its physical properties has been implemented step by step. Some academic examples are shown and compared with KMB or analytical results, like scalar advection or multi-species diffusion. Better precision and convergence in the physical fields are observed. Iterative loops and advective sub-cycles are also reduced thanks to the unstructured formalism. Super-scalar machines being widely used and developed, KIFP is dedicated for them.
Journal Article

Analysis of Combustion Process in Cold Operation with a Low Compression Ratio Diesel Engine

2010-04-12
2010-01-1267
Future emissions standards for passenger cars require a reduction of NOx (nitrogen oxide) and CO₂ (carbon dioxide) emissions of diesel engines. One of the ways to reach this challenge while keeping other emissions under control (CO: carbon monoxide, HC: unburned hydrocarbons and particulates) is to reduce the volumetric compression ratio (CR). Nevertheless complications appear with this CR reduction, notably during very cold operation: start and idle. These complications justify intensifying the work in this area. Investigations were led on a real 4-cylinder diesel 13.7:1 CR engine, using complementary tools: experimental tests, in-cylinder visualizations and CFD (Computational Fluid Dynamics) calculations. In previous papers, the way the Main combustion takes place according to Pilot combustion behavior was highlighted. This paper, presents an in-depth study of mixture preparation and the subsequent combustion process.
Journal Article

Cold Operation with Optical and Numerical Investigations on a Low Compression Ratio Diesel Engine

2009-11-02
2009-01-2714
With a high thermal efficiency and low CO2 (carbon dioxide) emissions, Diesel engines become leader of transport market. However, the exhaust-gas legislation evolution leads to a drastic reduction of NOx (nitrogen oxide) standards with very low particulate, HC (unburned hydrocarbons) and CO (carbon monoxide) emissions, while combustion noise and fuel consumption must be kept under control. The reduction of the volumetric compression ratio (CR) is a key factor to reach this challenge, but it is today limited by the capabilities to provide acceptable performances during very cold operation: start and idle below −10°C. This paper focuses on the understanding of the main parameter’s impacts on cold operation. Effects of parameters like hardware configuration and calibration optimization are investigated on a real 4 cylinder Diesel 14:1 CR engine, with a combination of specific advanced tools.
Journal Article

Cold Start on Diesel Engines: Effect of Fuel Characteristics

2010-05-05
2010-01-1506
Faced with the need to reduce greenhouse gas emissions, diesel engines present the advantage of having low CO₂ emission levels compared to spark-ignited engines. Nevertheless, diesel engines still suffer from the fact that they emit pollutants and, particularly nitrogen oxides (NOx) and particulates (PM). One of the most promising ways to meet this challenge is to reduce the compression ratio (CR). However a current limitation in reducing the diesel CR is cold start requirements. In this context, the fuel characteristics such as the cetane number, which represents ignition, and volatility could impact cold start. That is why a matrix of 8 fuels was tested. The cetane number ranges from 47.3 to 70.9 and the volatility, represented by the temperature necessary to distillate 5% of the product (T5%), ranges from 173 to 198°C. The engine tests were carried out at -25°C, on a common rail 4-cylinder diesel engine.
Technical Paper

Comparison and Coupling of Homogeneous Reactor and Flamelet Library Soot Modeling Approaches for Diesel Combustion

2001-09-24
2001-01-3684
Soot models applied to Diesel combustion can be grouped into two classes, one based on the flamelet concept and the other based on the homogeneous reactor concept. The first assumes that the laminar diffusion flame structure of the reaction zone, in the mixture fraction space, is preserved while convected and strained by the turbulent flow. The second assumes that the properties of the reaction zone are locally homogeneous. Thus the aerodynamic and chemical reaction interactions are modeled with opposing assumptions: the first assumes fast chemistry, the second fast mixing. In this work, we first compare results obtained with a flamelet library approach to those with a homogeneous reactor approach. Recognizing that both types of models apply in different regions of Diesel combustion, we then propose a new approach for soot modeling in which they are coupled.
Journal Article

Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities

2010-10-25
2010-01-2106
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP.
Technical Paper

Control-Oriented Mean-Value Model of a Fuel-Flexible Turbocharged Spark Ignition Engine

2010-04-12
2010-01-0937
Among the last years, environmental concerns have raised the interest for biofuels. Ethanol, blended with gasoline seems particularly suited for the operation of internal combustion engines, and has been in use for severals years in some countries. However, it has a strong impact on engine performance, which is emphasized on recent engine architectures, with downsizing through turbocharging and variable valve actuation. Taking all the benefits of ethanol-blended fuel thus requires an adaptation of the engine management system. This paper intends to assess the effect of gasoline-ethanol blending from this point of view, then to describe a mean-value model of a fuel-flexible turbocharged PFI-SI engine, which will serve as a basis for the development of control algorithms. The focus will be in this paper on ethanol content estimation in the blend, supported by both simulation and experimental results.
Technical Paper

Control-Oriented Modeling of Power Split Devices in Combined Hybrid-Electric Vehicles

2008-04-14
2008-01-1313
The paper discusses different alternative choices regarding the simulation and control of combined hybrid vehicles with a simple or compound power split device (PSD). These choices concern the causal representation of PSD both in a vehicle model and in the supervisory controller, the structure of the supervisory controller, and the pathway to generate the setpoints to the component-level controllers. Quasistatic and high-frequency simulations provide the example applications to assess the competing approaches.
Technical Paper

Development and Validation of a Knock Model in Spark Ignition Engines Using a CFD code

2002-10-21
2002-01-2701
Currently, the development of higher specific output and higher efficiency S.I. engines requires better control and knowledge of knock mechanisms. As it is not easily possible to instrument an engine to determine the beginning of fuel auto-ignition, knock modeling by means of 3D CFD simulation, can be a powerful tool to understand and try to avoid this phenomenon [1, 2, 3]. The objectives of the work described in this paper are to develop and validate a simple model of auto-ignition. This model, developed at IFP, is implemented in the 3D CFD code KMB [4, 5]. It is based on an AnB model [6, 7] which creates a ‘precursor’ species transported with the flow in the combustion chamber. When its concentration reaches a limiting value, the auto-ignition phenomenon occurs.
Journal Article

Development of Specific Tools for Analysis and Quantification of Pre-ignition in a Boosted SI Engine

2009-06-15
2009-01-1795
Recent developments on highly downsized spark ignition engines have been focused on knocking behaviour improvement and the most advanced technologies combination can face up to 2.5 MPa IMEP while maintaining acceptable fuel consumption. Unfortunately, knocking is not the only limit that strongly downsized engines have to confront. The improvement of low-end torque is limited by another abnormal combustion which appears as a random pre-ignition. This violent phenomenon which emits a sharp metallic noise is unacceptable even on modern supercharged gasoline engines because of the great pressure rise that it causes in the cylinder (up to 20 MPa). The phases of this abnormal combustion have been analysed and a global mechanism has been identified consisting of a local ignition before the spark, followed by a propagating phase and ended by a massive auto-ignition. This last step finally causes a steep pressure rise and pressure oscillations.
Technical Paper

High Pressure Diesel Spray and Combustion Visualization in a Transparent Model Diesel Engine

1999-10-25
1999-01-3648
A database of information concerning the spray development and pollutant formation in common-rail, direct-injection Diesel engine is constructed using a transparent model Diesel engine. Spray development is investigated using optical diagnostics: Mie scattering and Laser Induced Exciplex Fluorescence (LIEF) make possible qualitative visualization of liquid and vapor phases. The injection pressure/nozzle hole diameter is found to be the most important parameter (in the parameter range used for the study): it reduces the liquid penetration length and improves the mixing of vapor fuel. Direct imaging of combustion development shows the influence of different engine parameters on flame location. Comparison with measured vapor distributions shows the effect of thermal expansion on the vapor plume before any light from combustion is visible. Soot formation is investigated using Laser Induced Incandescence imaging.
Journal Article

Impact of Fuel Properties on the Performances and Knock Behaviour of a Downsized Turbocharged DI SI Engine - Focus on Octane Numbers and Latent Heat of Vaporization

2009-04-20
2009-01-0324
Facing the CO2 emission reduction challenge, the combination of downsizing and turbocharging appears as one of the most promising solution for the development of high efficiency gasoline engines. In this context, as knock resistance is a major issue, limiting the performances of turbocharged downsized gasoline engines, fuel properties are more than ever key parameters to achieve high performances and low fuel consumption's levels. This paper presents a combustion study carried out into the GSM consortium of fuel quality effects on the performances of a downsized turbocharged Direct Injection SI engine. The formulation of two adapted fuel matrix has allowed to separate and evaluate the impacts of three major fuel properties: Research Octane Number (RON), Motor Octane Number (MON) and Latent Heat of Vaporization (LHV). Engine tests were performed on a single cylinder engine at steady state operating condition.
Technical Paper

Improved Modelling of DI Diesel Engines Using Sub-grid Descriptions of Spray and Combustion

2003-03-03
2003-01-0008
Three dimensional CFD tools are commonly used to simulate spray injection and combustion in DI Diesel engines. However typical computations are strongly mesh dependent. By now it is not possible to enhance grid resolution since it would violate the underlying assumptions for the Lagrangian liquid phase description. Besides, a full Eulerian approach with an adapted mesh is not practical at the moment mainly because of prohibitive computer requirements. Based on the Lagrangian-Eulerian approach, new approaches have been developed: the Coupled Lagrangian-Eulerian (CLE) model for the two-way coupling between the spray and the air flow and a new combustion model (CFM3Z) which allows a description of the fuel-oxidizer sub-grid mixing. The previously introduced CLE model consists in retaining vapor and momentum along parcel trajectories as long as the mesh is insufficient to resolve the steep gradients created by the spray.
Journal Article

Increasing Power Density in HSDI Engines as an Approach for Engine Downsizing

2010-05-05
2010-01-1472
In the context of CO₂ emission regulations and increase of energy prices, the downsizing of engine displacement is a widely discussed solution that allows a reduction of fuel consumption. However, high power density is required in order to maintain the power output and a good driveability. This study demonstrates the potential to strongly increase the specific power of High Speed Diesel Injection (HSDI) diesel engines. It includes the technological requirements to achieve high specific power and the optimal combination of engine settings to maximize specific power. The results are based on experimental work performed with a prototype single-cylinder engine (compression ratio of 14). Tests were conducted at full load, 4000 rpm. Part load requirements are also taken into account in the engine definition to be compatible with the targets of new emission standards.
Technical Paper

Matching and Evaluating Methods for Euro 6 and Efficient Two-stage Turbocharging Diesel Engine

2010-04-12
2010-01-1229
While fuel efficiency has to be improved, future Diesel engine emission standards will further restrict vehicle emissions, particularly of nitrogen oxides. Increased in-cylinder filling is recognized as a key factor in addressing this issue, which calls for advanced design of air and exhaust gas recirculation circuits and high cooling capabilities. As one possible solution, this paper presents a 2-stage boosting breathing architecture, specially dedicated to improving the trade-off between emissions and fuel consumption instead of seeking to improve specific power on a large family vehicle equipped with a 1.6-liter Diesel engine. In order to do it, turbocharger matching was specifically optimized to minimize engine-out NOx emissions at part-load and consumption under common driving conditions. Engine speed and load were analyzed on the European driving cycle. The key operating points and associated upper boundary for NOx emission were identified.
X