Refine Your Search

Topic

Author

Search Results

Journal Article

A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry

2009-04-20
2009-01-0678
More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach.
Technical Paper

A 3WCC Global Kinetic Model: A Calibration Method Using Laboratory Scale and Engine Test Bench Experiments

2008-04-14
2008-01-0453
A 3 way catalytic converter (3WCC) model based on a global kinetic model was developed and validated against laboratory scale and engine test bench experiments. Various equivalence ratios and temperatures were tested. A methodology was finalized and applied to calibrate the kinetic constants. Laboratory scale experiments were first used to characterize the reaction mechanism during light-off, including the way reduction and oxidation reactions begin and compete with each other when temperature increases. The numerical results are in good agreement with the laboratory scale light-off results. Also, when adapted to simulate the engine test bench experiments, the model is able to correctly reproduce both the light-off tests and the 3WCC conversion efficiency evolution versus equivalence ratio. A calibration method in two steps was thus established and successfully used. The combination of modeling with experimental work appeared to be a powerful tool to determine the reaction mechanism.
Journal Article

A Comparison of Combustion and Emissions Behaviour in Optical and Metal Single-Cylinder Diesel Engines

2009-06-15
2009-01-1963
Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study.
Technical Paper

A Detailed Well to Wheel Analysis of CNG Compared to Diesel Oil and Gasoline for the French and the European Markets

2007-01-23
2007-01-0037
Pollutants emissions from transportation have become a major focus of environmental concerns in the last decades. Many alternative fuels are under consideration, among which Natural Gas as fossil resource offering an advantageous potential to reduce local emissions. The European Commission has set an objective of 10% of Natural Gas consumption for the transport sector by 2020. In a sustainable development view, both vehicle emissions and energy supply chain analysis from well to wheel must be addressed. Even if the main focus today is on CO2 emissions, it is interesting to evaluate the pollutant emissions of the whole Well to Wheel chain. Besides, as the potential of reducing pollutant emissions of vehicle (due to the improvement of engines and severization of norms), looking at pollutant emissions of the Well to Tank part of the chain could show the possible further improvements. Former studies exist, comparing Natural Gas to conventional and non conventional fuels.
Technical Paper

A New 0D Approach for Diesel Combustion Modeling Coupling Probability Density Function with Complex Chemistry

2006-10-16
2006-01-3332
The model presented in this paper is an original contribution for two main mechanisms involved in a Diesel combustion chamber: the micro-mixing and the combustion heat release. The micro-mixing phenomenon is modelled thanks to the presumed probability density function theory adapted to the 0D combustion modeling issues in order to take into account the stratification of air / fuel ratio around the spray. The combustion heat release is obtained from complex chemistry look-up tables. These tables are issued from a dedicated use of the Flame Prolongation of ILDM theory and allow a large range of combustion conditions since it includes high EGR rates. Moreover, the spray model including evaporation and turbulent macro-mixing is based on the well-known Siebers theory.
Technical Paper

A Study of Mixture Formation in Direct Injection Diesel Like Conditions Using Quantitative Fuel Concentration Visualizations in a Gaseous Fuel Jet

2002-05-06
2002-01-1632
Quantitative fuel concentration visualizations are carried out to study the mixing process between fuel and air in Direct Injection (DI) Diesel like conditions, and generate high quality data for the validation of mixing models. In order to avoid the particular complication connected with fuel droplets, a gaseous fuel jet is investigated. Measurements are performed in a high-pressure chamber that can provide conditions similar to those in a diesel engine. A gas injection system able to perform injections in a high-pressure chamber with a good control of the boundary conditions is chosen and characterized. Mass flow rates typical of DI Diesel injection are reproduced. A Laser Induced Fluorescence technique requiring the mixing at high pressure of the fluorescent tracer, biacetyl, with the gaseous fuel, methane, is developed. This experimental technique is able to provide quantitative measurement of fuel concentration in high-pressure jets.
Technical Paper

AMT Control for a Mild-Hybrid Urban Vehicle with a Downsized Turbo-Charged CNG Engine

2007-04-16
2007-01-0286
Compressed natural gas (CNG) is considered as one of the most promising alternative fuels for transportation due to its ability to reduce greenhouse gas emissions (CO2, in particular) and its abundance. An earlier study from IFP has shown that CNG has a considerable potential when used as a fuel for a dedicated downsized turbo-charged SI engine on a small urban vehicle. To take further advantage of CNG assets, this approach can be profitably extended by adding a small secondary (electrical) power source to the CNG engine, thus hybridizing the powertrain. This is precisely the focus of the new IFP project, VEHGAN, which aims to develop a mild-hybrid CNG prototype vehicle based on a MCC smart car equipped with a reversible starter-alternator and ultra-capacitors (Valeo Starter Alternator Reversible System, StARS).
Technical Paper

Advanced Aftertreatment System Meeting Future HD CNVII Legislation

2024-04-09
2024-01-2379
Options for CNVII emission legislation are being widely investigated in a national program organized by China Vehicle Emission Control Center (VECC) since early 2020. It is foreseen that this possibly last legislation in China will have more stringent emission requirements compared to CNVI, including among other changes especially a further reduction of nitrogen oxide (NOx), inclusion of nitrous oxide (N2O) and sub-23 nm particle number (PN). This study investigates the technical feasibility to fulfill a CNVII emission legislation scenario, based on a modified CNVI 8 L engine operating under both cold and hot World Harmonized Transient Cycle (WHTC) and Low Load Cycle (LLC).
Journal Article

Advanced Injection Strategies for Controlling Low-Temperature Diesel Combustion and Emissions

2009-06-15
2009-01-1962
The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies.
Technical Paper

Advanced TWC Technology to Cover Future Emission Legislations

2015-04-14
2015-01-0999
The new emission regulations in Europe, EU 6 will promulgate more realistic driving conditions with more stringent HC, CO, NOx and particulate emissions. This legislation will also include the WLTP (Worldwide harmonized Light vehicles Test Procedure) cycle for CO2 measurements and a new requirement called “Real-Driving-Emissions” (RDE) as well. The RDE requirement is to ensure modern vehicles comply with the legislation under all conditions of normal driving. More robust aftertreatment solutions are needed to meet these new requirements. This work introduces an improved three-way catalyst (TWC) for gasoline engines for these new regulations. It is tested under static and dynamic conditions and on several engines and vehicles with various drive cycles. It offers better thermal stability combined with lower backpressure than former TWC generations.
Technical Paper

An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation

2002-03-04
2002-01-1120
KIFP, an hexahedral unstructured version of KIVA-MB (KMB), the current CFD code for engines at IFP, has been developed. Based on KIVA algorithms (finite volume on staggered grids, time-splitting, SIMPLE loop, sub-cycled advection…), the new solver has been built step by step with a strong control on the numerical results. This paper shows the different phases of this work. The numerical approaches and developments are discussed. Several moving grids algorithms have been tested without the flow and results are presented. The flow with its physical properties has been implemented step by step. Some academic examples are shown and compared with KMB or analytical results, like scalar advection or multi-species diffusion. Better precision and convergence in the physical fields are observed. Iterative loops and advective sub-cycles are also reduced thanks to the unstructured formalism. Super-scalar machines being widely used and developed, KIFP is dedicated for them.
Journal Article

Analysis of Combustion Process in Cold Operation with a Low Compression Ratio Diesel Engine

2010-04-12
2010-01-1267
Future emissions standards for passenger cars require a reduction of NOx (nitrogen oxide) and CO₂ (carbon dioxide) emissions of diesel engines. One of the ways to reach this challenge while keeping other emissions under control (CO: carbon monoxide, HC: unburned hydrocarbons and particulates) is to reduce the volumetric compression ratio (CR). Nevertheless complications appear with this CR reduction, notably during very cold operation: start and idle. These complications justify intensifying the work in this area. Investigations were led on a real 4-cylinder diesel 13.7:1 CR engine, using complementary tools: experimental tests, in-cylinder visualizations and CFD (Computational Fluid Dynamics) calculations. In previous papers, the way the Main combustion takes place according to Pilot combustion behavior was highlighted. This paper, presents an in-depth study of mixture preparation and the subsequent combustion process.
Technical Paper

Analysis of HC Emissions on Single Cylinder During Transient Conditions

2004-03-08
2004-01-0981
For studying simultaneously and early in the development process the effects of engine design parameters and of control strategies on HC emissions, a methodology has been set up to reproduce on a gasoline single-cylinder engine the beginning of MVEG cycle. This methodology uses different fuels and analysis tools to assess the HC sources. Oil and water are heated to follow the thermal behavior of a multi cylinder engine. A fast prototyping system is used to control the engine. Special attention has been paid to take into account the acoustic effect on the air feeding. The main tendencies observed in stabilized conditions are similar to transient test conditions with GDI engine. Wall wetting appears as the main source of HC emission in case of direct injection. Transient effects are especially sensitive during cold conditions.
Journal Article

Applicable Diesel Oxidation Catalyst for Multi-Diesel Exhaust System

2014-04-01
2014-01-1511
The diesel oxidation catalysts (DOC) having high purification performance to the exhaust gas at low temperatures were investigated. In this paper two main technological improvements from conventional DOC are shown. First is forming Pt/Pd composite particles in order to suppress sintering of precious metal under high thermal aging condition. This generating Pt/Pd composite and the effect were exemplified by TEM-EDS and XRD analysis. Second is adjusting electric charge of Pt/Pd surface to reduce interaction between Pt/Pd and carbon monoxide (CO) by modifying the support material components. Adjusting electric charge of Pt/Pd surface by applying new support material could cancel CO poisoning at Pt/Pd surface. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) studies suggested that improved support material is more suitable for CO oxidation at a low temperature based on the concept.
Technical Paper

Catalyst Design for High Performance Engines Capable to Fulfill Future Legislation

2004-03-08
2004-01-1276
To meet future emission levels the industry is trying to reduce tailpipe emissions by both, engine measures and the development of novel aftertreatment concepts. The present study focuses on a joint development of aftertreatment concepts for gasoline engines that are optimized in terms of the exhaust system design, the catalyst technology and the system costs. The best performing system contains a close-coupled catalyst double brick arrangement using a new high thermal stable catalyst technology with low precious metal loading. This system also shows an increased tolerance against catalyst poisoning by engine oil.
Technical Paper

Catalyst Technologies for Gasoline Engines with Respect to CO2 Reduction

2011-01-19
2011-26-0027
Besides the further reduction of the harmful gaseous emissions (HC, CO and NOx) to reach upcoming emission limits, the discussion on lowering the CO₂ emissions is omnipresent. From engine development point of view further optimization of the stoichiometric-operated gasoline engine as well as the introduction of lean-operated engines are the main development trend. The emission control system can support the engine development by dedicated catalyst technologies as presented in this paper. A new family of TWC technologies offers to tune the catalyst system to the engine performance and the back pressure requirement - which helps to reduce CO₂ emissions. In addition these technologies show improved performance in HC, CO, NOx light-off, and in CO and NOx conversions under dynamic conditions - this again can positively impact the CO₂ emissions as less harsh heating strategies for cold start is required.
Journal Article

Catalysts for Post Euro 6 Plug-In Hybrid Electric Vehicles

2020-04-14
2020-01-0354
Due to benefits from the use of electric power, Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) are regarded to be superior over conventional Internal Combustion Engine (ICE) only vehicles in fuel economy and emissions. However, recent studies find out that this is not always true. On certain conditions, hybrid vehicles can be even more polluted. In order to identify these challenges and develop catalysts to meet more stringent emission requirement in the future, e.g. Euro 7, for hybrid application, as a part of our xHEV project, this study includes exclusively extensive investigation on a latest Euro 6d temp Parallel PHEV.
Journal Article

Cold Operation with Optical and Numerical Investigations on a Low Compression Ratio Diesel Engine

2009-11-02
2009-01-2714
With a high thermal efficiency and low CO2 (carbon dioxide) emissions, Diesel engines become leader of transport market. However, the exhaust-gas legislation evolution leads to a drastic reduction of NOx (nitrogen oxide) standards with very low particulate, HC (unburned hydrocarbons) and CO (carbon monoxide) emissions, while combustion noise and fuel consumption must be kept under control. The reduction of the volumetric compression ratio (CR) is a key factor to reach this challenge, but it is today limited by the capabilities to provide acceptable performances during very cold operation: start and idle below −10°C. This paper focuses on the understanding of the main parameter’s impacts on cold operation. Effects of parameters like hardware configuration and calibration optimization are investigated on a real 4 cylinder Diesel 14:1 CR engine, with a combination of specific advanced tools.
Journal Article

Cold Start on Diesel Engine: Is Low Compression Ratio Compatible with Cold Start Requirements?

2008-04-14
2008-01-1310
Future emission standards for Diesel engine will require a drastic reduction of engine-out NOx emissions with very low level of particulate matter (PM), HC and CO, and keeping under control fuel consumption and combustion noise. One of the most promising way to reach this challenge is to reduce compression ratio (CR). A stringent limitation of reducing Diesel CR is currently cold start requirements. Indeed, reduction of ambient temperature leads to penalties in fuel vaporization and auto ignition capabilities, even more at very low temperature (-20°C and below). In this paper, we present the work operated on an HSDI Common rail Diesel 4-cyl engine in three area: engine tests till very low temperature (down to -25°C); in cylinder imaging (videoscope) and CFD code development for cold start operation. First, combustion chamber is adapted in order to reach low compression ratio (CR 13.7:1).
Journal Article

Cold Start on Diesel Engines: Effect of Fuel Characteristics

2010-05-05
2010-01-1506
Faced with the need to reduce greenhouse gas emissions, diesel engines present the advantage of having low CO₂ emission levels compared to spark-ignited engines. Nevertheless, diesel engines still suffer from the fact that they emit pollutants and, particularly nitrogen oxides (NOx) and particulates (PM). One of the most promising ways to meet this challenge is to reduce the compression ratio (CR). However a current limitation in reducing the diesel CR is cold start requirements. In this context, the fuel characteristics such as the cetane number, which represents ignition, and volatility could impact cold start. That is why a matrix of 8 fuels was tested. The cetane number ranges from 47.3 to 70.9 and the volatility, represented by the temperature necessary to distillate 5% of the product (T5%), ranges from 173 to 198°C. The engine tests were carried out at -25°C, on a common rail 4-cylinder diesel engine.
X