Refine Your Search

Topic

Author

Search Results

Journal Article

A Comparison of Combustion and Emissions Behaviour in Optical and Metal Single-Cylinder Diesel Engines

2009-06-15
2009-01-1963
Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study.
Technical Paper

A Multi-Pipe Junction Model for One-Dimensional Gas-Dynamic Simulations

2003-03-03
2003-01-0370
Computer programs that simulate the wave propagation phenomena involved in manifold tuning mechanisms are used extensively in the design and development of internal combustion engines. Most comprehensive engine simulation programs are based on the governing equations of one-dimensional gas flow as these provide a reasonable compromise between modelling accuracy and computational speed. The propagation of pressure waves through pipe junctions is, however, an intrinsically multi-dimensional phenomenon. The modelling of such junctions within a one-dimensional simulation represents a major challenge, since the geometry of the junction cannot be fully represented but can have a major influence on the flow. This paper introduces a new pressure-loss junction model which can mimic the directionality imposed by the angular relationship of the pipes forming a multi-pipe junction. A simple technique for estimating the pressure-loss data required by the model is also presented.
Technical Paper

A New 0D Approach for Diesel Combustion Modeling Coupling Probability Density Function with Complex Chemistry

2006-10-16
2006-01-3332
The model presented in this paper is an original contribution for two main mechanisms involved in a Diesel combustion chamber: the micro-mixing and the combustion heat release. The micro-mixing phenomenon is modelled thanks to the presumed probability density function theory adapted to the 0D combustion modeling issues in order to take into account the stratification of air / fuel ratio around the spray. The combustion heat release is obtained from complex chemistry look-up tables. These tables are issued from a dedicated use of the Flame Prolongation of ILDM theory and allow a large range of combustion conditions since it includes high EGR rates. Moreover, the spray model including evaporation and turbulent macro-mixing is based on the well-known Siebers theory.
Technical Paper

A Study of Combustion Structure and Implications on Post-Oxidation Under Homogeneous and Stratified Operation in a DISI Engine

2006-04-03
2006-01-1262
An experimental investigation into the structure and flame propagation characteristics of stratified and homogeneous combustion has been performed in an optically-accessible, direct-injection spark ignition (DISI) engine using OH planar laser-induced fluorescence (PLIF) imaging. Homogeneous and stratified operation was achieved by employing either early or late injection timing strategies during the intake or compression stroke respectively. Planar LIF OH images obtained revealed that for stratified operation, the 3D structure of the combustion zone is highly inhomogeneous and is predominantly due to high fuel concentration gradients which are formed as a result of local fuel mixture stratification. The images reveal a combustion structure which suggests that the flame propagation pathway is ultimately determined by the presence of these local fuel mixture inhomogeneities.
Journal Article

Advanced Injection Strategies for Controlling Low-Temperature Diesel Combustion and Emissions

2009-06-15
2009-01-1962
The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies.
Technical Paper

Alcohol-Based Fuels in High Performance Engines

2007-01-23
2007-01-0056
The paper discusses the use of alcohol fuels in high performance pressure-charged engines such as are typical of the type being developed under the ‘downsizing’ banner. To illustrate this it reports modifications to a supercharged high-speed sports car engine to run on an ethanol-based fuel (ethanol containing 15% gasoline by volume, or ‘E85’). The ability for engines to be able to run on alcohol fuels may become very important in the future from both a global warming viewpoint and that of security of energy supply. Additionally, low-carbon-number alcohol fuels such as ethanol and methanol are attractive alternative fuels because, unlike gaseous fuels, they can be stored relatively easily and the amount of energy that can be contained in the vehicle fuel tank is relatively high (although still less than when using gasoline).
Technical Paper

Analysis of HC Emissions on Single Cylinder During Transient Conditions

2004-03-08
2004-01-0981
For studying simultaneously and early in the development process the effects of engine design parameters and of control strategies on HC emissions, a methodology has been set up to reproduce on a gasoline single-cylinder engine the beginning of MVEG cycle. This methodology uses different fuels and analysis tools to assess the HC sources. Oil and water are heated to follow the thermal behavior of a multi cylinder engine. A fast prototyping system is used to control the engine. Special attention has been paid to take into account the acoustic effect on the air feeding. The main tendencies observed in stabilized conditions are similar to transient test conditions with GDI engine. Wall wetting appears as the main source of HC emission in case of direct injection. Transient effects are especially sensitive during cold conditions.
Technical Paper

Asymmetric Valve Strategies and Their Effect on Combustion

1993-03-01
930821
In order to reduce the development time involved in optimising the combustion system and valve timing of the internal combustion engine, an electro-hydraulic valve actuation system has been developed. The effects of various combustion strategies, including asymmetrical valve events, on emissions and efficiency, together with their sensitivity to EGR and AFR were investigated. In addition, the influence of the cylinder head design on in-cylinder charge motion and combustion was investigated by correlating airflow, tumble and swirl data to the heat release data obtained during dynamometer testing.
Journal Article

Cold Operation with Optical and Numerical Investigations on a Low Compression Ratio Diesel Engine

2009-11-02
2009-01-2714
With a high thermal efficiency and low CO2 (carbon dioxide) emissions, Diesel engines become leader of transport market. However, the exhaust-gas legislation evolution leads to a drastic reduction of NOx (nitrogen oxide) standards with very low particulate, HC (unburned hydrocarbons) and CO (carbon monoxide) emissions, while combustion noise and fuel consumption must be kept under control. The reduction of the volumetric compression ratio (CR) is a key factor to reach this challenge, but it is today limited by the capabilities to provide acceptable performances during very cold operation: start and idle below −10°C. This paper focuses on the understanding of the main parameter’s impacts on cold operation. Effects of parameters like hardware configuration and calibration optimization are investigated on a real 4 cylinder Diesel 14:1 CR engine, with a combination of specific advanced tools.
Journal Article

Cold Start on Diesel Engine: Is Low Compression Ratio Compatible with Cold Start Requirements?

2008-04-14
2008-01-1310
Future emission standards for Diesel engine will require a drastic reduction of engine-out NOx emissions with very low level of particulate matter (PM), HC and CO, and keeping under control fuel consumption and combustion noise. One of the most promising way to reach this challenge is to reduce compression ratio (CR). A stringent limitation of reducing Diesel CR is currently cold start requirements. Indeed, reduction of ambient temperature leads to penalties in fuel vaporization and auto ignition capabilities, even more at very low temperature (-20°C and below). In this paper, we present the work operated on an HSDI Common rail Diesel 4-cyl engine in three area: engine tests till very low temperature (down to -25°C); in cylinder imaging (videoscope) and CFD code development for cold start operation. First, combustion chamber is adapted in order to reach low compression ratio (CR 13.7:1).
Technical Paper

Comprehensive Charge-cooler Model for Simulating Gas Dynamics in Engine Manifolds

2000-03-06
2000-01-1264
Charge-coolers have a significant effect on the performance of turbocharged internal combustion engines. For a comprehensive simulation of internal combustion engines fitted with such devices it is important to model the whole of the manifold system. A wave-action model of a charge-cooler boundary is proposed, together with a methodology for predicting the heat transfer coefficient of the device. This approach enables the instantaneous effectiveness of the charge-cooler to be predicted as a function of the mass flow rate through the device.
Technical Paper

Development and Validation of a Knock Model in Spark Ignition Engines Using a CFD code

2002-10-21
2002-01-2701
Currently, the development of higher specific output and higher efficiency S.I. engines requires better control and knowledge of knock mechanisms. As it is not easily possible to instrument an engine to determine the beginning of fuel auto-ignition, knock modeling by means of 3D CFD simulation, can be a powerful tool to understand and try to avoid this phenomenon [1, 2, 3]. The objectives of the work described in this paper are to develop and validate a simple model of auto-ignition. This model, developed at IFP, is implemented in the 3D CFD code KMB [4, 5]. It is based on an AnB model [6, 7] which creates a ‘precursor’ species transported with the flow in the combustion chamber. When its concentration reaches a limiting value, the auto-ignition phenomenon occurs.
Technical Paper

Development of Highly Premixed Combustion Diesel Model: From Simulation to Control Design

2006-04-03
2006-01-1072
In the context of increasingly stringent pollution norms, reduced engine emissions are a great challenge for compressed ignition engines. After-treatment solutions are expensive and very complex to implement, while the NOx/PM trade-off is difficult to optimise for conventional Diesel engines. Therefore, in-cylinder pollutant production limitation by the HPC combustion mode (Highly Premixed Combustion) - including Homogeneous Charge Compression Ignition (HCCI) - represents one of the most promising ways for new generation of CI engine. For this combustion technology, control based on torque estimation is crucial: the objectives are to accurately control the cylinder-individual fuel injected mass and to adapt the fuel injection parameters to the in-cylinder conditions (fresh air and burned gas masses and temperature).
Technical Paper

Development of a Flex Fuel Vehicle: Impact on Powertrain's Design and Calibration

2010-10-25
2010-01-2087
The benefits of running on ethanol-blended fuels are well known, especially global CO₂ reduction and performances increase. But using ethanol as a fuel is not drawbacks free. Cold start ability and vehicle autonomy are appreciably reduced. These two drawbacks have been tackled recently by IFP and its partners VALEO and Cristal Union. This article will focus on the second one, as IFP had the responsibility to design the powertrain of a fully flex-fuel vehicle (from 0 to 100% of ethanol) with two main targets: reduce the fuel consumption of the vehicle and maintain (at least) the vehicle performances. Using a MPI scavenging in-house concept together with turbocharging, as well as choosing the appropriate compression ratio, IFP managed to reach the goals.
Technical Paper

Development of a Multi-Sensors Head Gasket for Knock Localization

2003-03-03
2003-01-1117
In order to determine the area where knock occurs in a single cylinder engine, an acoustic methodology needs a minimum of four simultaneous pressure measurements in the combustion chamber. A specific cylinder head gasket integrating 12 pressure sensors has been developed and tested. The gasket is based on a bonded multilayer technology including high temperature piezoelectric cells, metallic and insulating sheets and printed circuit films. The total thickness is close to 1.25 mm (1/20 inch) and allows a straight forward substitution of the original gasket without modification. The sensors have large frequency bandwidth (typically 3-100 kHz) and withstand severe conditions (heat, combustion, pressure, vibrations, static pre-stress, electromagnetic fields and shocks). Signal processing adaptation of the dedicated exploitation software has brought good success for the single cylinder prototype, which remains operational after 100 hours of extreme conditions running (high knock).
Technical Paper

Development of the High Power NADI™ Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions

2002-05-06
2002-01-1744
Due to their high thermal efficiency coupled with low CO2 emissions, Diesel engines are promised to an increasing part of the transport market if their NOx and particulate emissions are reduced. Today, adequate after-treatments, NOx and PM traps are under industrialization with still concerns about fuel economy, robustness, sensitivity to fuel sulfur and cost because of their complex and sophisticated strategy. New combustion process such as Homogeneous Charge Compression Ignition (HCCI) are investigated for their potential to achieve near zero particulate and NOx emissions. Their main drawbacks are too high hydrocarbons (HC) and carbon monoxide (CO) emissions, combustion control at high load and then limited operating range and power output. As an answer for challenges the Diesel engine is facing, IFP has developed a combustion system able to reach near zero particulate and NOx emissions while maintaining performance standards of the D.I Diesel engines.
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Technical Paper

Emissions Optimisation by Camshaft Profile Switching

1991-02-01
910838
High engine efficiency and low emissions on spark ignition engines can be achieved with a new camshaft profile switching device. This enables the use of two camshaft profiles for inlet and exhaust that can be switched independent of each other by any engine management input. This paper proposes the use of this device to give an excellent torque curve together with reduced emissions, by selecting from two discrete inlet and exhaust camshaft profiles and timings against engine parameters such as speed, load and temperature.
Technical Paper

Enlarging the Operational Range of a Gasoline HCCI Engine By Controlling the Coolant Temperature

2005-04-11
2005-01-0157
The Homogeneous Charge Compression Ignition (HCCI) engine combustion uses heat energy from trapped exhaust gases enhanced by the piston compression heating to auto ignite a premixed air/gasoline mixture. As the HCCI combustion is controlled by the charge temperature, composition and pressure, it therefore, prevents the use of a direct control mechanism such as in the spark and diesel combustion. Using a large amount of trapped residual gas (TRG), is seen as one of the ways to achieve and control HCCI in a certain operating range. By varying the amount of TRG in the fresh air/fuel mixture (inside the cylinder), the charge mixture temperature, composition and pressure can be controlled and hence, the auto ignition timing and heat release rate. The controlled auto ignition (HCCI) engine concept has the potential to be highly efficient and to produce low NOx, carbon dioxide and particulate matter emissions.
Technical Paper

Exploitation of Energy Resources and Future Automotive Fuels

2007-01-23
2007-01-0034
The future exploitation of global energy resources is currently being hotly debated by politicians and by sections of the scientific community but there is little guidance available in the engineering literature as to the full gamut of options or their viability with respect to fuelling the world's vehicles. In the automotive industry extensive research is being undertaken on the use of alternative fuels in internal combustion engines and on the development of alternative powerplants but often the long-term strategy and sustainability of the energy sources to produce these fuels is not clearly enunciated. The requirement to reduce CO2 emissions in the face of accelerating global warming scenarios and the depletion of fossil-fuel resources has led to the widespread assumption that some form of ‘hydrogen economy’ will prevail; this view is seldom justified or challenged.
X