Refine Your Search

Topic

Author

Search Results

Technical Paper

A 3D Linear Acoustic Network Representation of Mufflers with Perforated Elements and Sound Absorptive Material

2017-06-05
2017-01-1789
The acoustics of automotive intake and exhaust systems is typically modeled using linear acoustics or gas-dynamics simulation. These approaches are preferred during basic sound design in the early development stages due to their computational efficiency compared to complex 3D CFD and FEM solutions. The linear acoustic method reduces the component being modelled to an equivalent acoustic two-port transfer matrix which describes the acoustic characteristic of the muffler. Recently this method was used to create more detailed and more accurate models based on a network of 3D cells. As the typical automotive muffler includes perforated elements and sound absorptive material, this paper demonstrates the extension of the 3D linear acoustic network description of a muffler to include the aforementioned elements. The proposed method was then validated against experimental results from muffler systems with perforated elements and sound absorptive material.
Technical Paper

A Development of SCR (Selective Catalytic Reduction) Model and Its Applications

2022-03-29
2022-01-0557
A physics-based model for SCR (Selective Catalytic Reduction) was developed based on five independent SGB (Synthetic Gas Bench) tests. There are NH3 adsorption & desorption test, NO oxidation test, NH3 oxidation test, SCR reaction (NOx & NH3) test and SV (Space Velocity) test. To validate the accuracy of SCR model’s prediction, transient reactor tests were conducted at four different input conditions. A newly developed SCR model showed more than 90% prediction accuracy in transient test conditions in view of cumulative NOx. Validation of SCR model was conducted on 1.6L light duty diesel vehicle in the WLTC (Worldwide Harmonized Light vehicles Test Cycle). Based upon this SCR model, vehicle level SCR calibrations used for urea dosing control were made and validated in the emission test cycles like WLTC.
Journal Article

A Hybrid Development Process for NVH Optimization and Sound Engineering Considering the Future Pass-by Homologation Demands

2016-11-08
2016-32-0043
Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
Technical Paper

A Study for Improving the Resistance to Fretting Corrosion of SCr 420 Gear Steel

2007-08-05
2007-01-3734
A study for improving the resistance to fretting corrosion of SCr 420 pinion gear was conducted. Fretting is the damage to contacting surfaces experiencing slight relative reciprocating sliding motion of low amplitude. Fretting corrosion is the fretting damage to unlubricated contacting surfaces accompanied by corrosion, mostly oxidation that occurs if the fretting occurs in air. Two kinds of conventional heat treatment and a newly designed one suggested for improving the resistance to the fretting corrosion of pinion gear were compared each other to find out what is the main factor for generating fretting corrosion phenomenon. Increased carbon potential at both the heating and diffusing zone and reduced time of tempering was found out to be a solution for improving the resistance to fretting corrosion of forged and heat treated gear steel. On the contrary, modified carbo-nitriding using ammonia gas has been getting worse the fretting corrosion problem.
Technical Paper

A Study of Flow Characteristics Inside the Two Types of Exhaust Manifold and CCC Systems

1999-03-01
1999-01-0457
A study of unsteady compressible flow for two types of exhaust manifold and CCC (Close-Coupled Catalyst) systems attached to a 4-cylinder DOHC gasoline engine was carried out to investigate the flow distribution of exhaust gases and finally to make the conversion efficiency of catalyst better. An experimental study was conducted, using LDV technique, to measure the velocity distributions inside exhaust manifolds and CCC under practical engine conditions. In this study, through experiment and calculation, the effects of geometric configuration of exhaust manifold on flow maldistribution in monolith were mainly investigated to understand the exhaust flow structure in terms of flow uniformity and to improve the conversion efficiency. As a result of this fundamental study, the modified exhaust manifold (Type B) was designed and manufactured. Full load performance tests and vehicle emission tests were performed to see the effects of flow characteristics on engine performance and emission.
Technical Paper

A Study of LNT & Urea SCR on DPF System to Meet the Stringent Exhaust Emission Regulation

2014-10-13
2014-01-2810
In diesel engine development, the new technology is coming out to meet the stringent exhaust emission regulation. The regulation demands more eco-friendly vehicles. Euro6c demands to meet not only WLTP mode, but also RDE(Real Driving Emission). In order to satisfy RDE mode, the new technology to reduce emissions should cover all operating areas including High Load & High Speed. It is a big challenge to reduce NOx on the RDE mode and a lot of DeNOx technologies are being developed. So the new DeNOx technology is needed to cover widened operating area and strict acceleration / deacceleration. The existing LNT(Lean NOx Trap) and Urea SCR(Selective Catalytic Reduction) is necessary to meet the typical NEDC or WLTP, but the RDE mode demands the powerful DeNOx technology. Therefore, the LNT & Urea SCR on DPF was developed through this study.
Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Technical Paper

An Experimental and Computational Study of Flow Characteristics in Exhaust Manifold and CCC (Close-Coupled Catalyst)

1998-02-23
980128
A combined experimental and computational study of 3-D unsteady compressible flow in exhaust manifold and CCC system was performed to understand the flow characteristics and to improve the flow distribution of pulsating exhaust gases within monolith. An experimental study was carried out to measure the velocity distribution in production exhaust manifold and CCC under engine operating conditions using LDV (Laser Doppler Velocimetry) system. Velocity characteristics were measured at planes 25 mm away from the front surface of first monolith and between two monolithic bricks. To provide boundary conditions for the computational study, velocity fields according to crank angle were also measured at the entrance of exhaust manifold. The comparisons of exhaust gas flow patterns in the junction and mixing pipe between experimental and computational results were made.
Technical Paper

An Optimization of Dual Continuously Variable Valve Timing for Reducing Intake Orifice Noise of a SI Engine

2008-04-14
2008-01-0892
For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, various types of system for variable valve timing were developed by many automotive researchers. In this paper, we investigated the relationship between valve timing and intake orifice noise, and suggested how to improve NVH (Noise, Vibration and Harshness) performance as well as engine torque. Some experiments using the engine dynamometer were carried over about 150 different operating conditions. BEM analysis was also conducted in order to calculate acoustic modes of intake system. The results show that the valve timing and overlap of breathing systems have influence on NVH behavior, especially intake orifice noise over whole range of operating conditions. Valve timing and overlap of intake and exhaust valve were optimized in the view of sound quality as well as overall noise level.
Technical Paper

Ash Transport and Deposition, Cake Formation and Segregation-A Modeling Study on the Impact of Ash on Particulate Filter Performance

2019-04-02
2019-01-0988
Non-combustible particles, commonly summarized as ash, influence the lifetime performance of wall flow filters. This study aims to investigate this influence by means of simulation. An existing transient 1D+1D wall flow filter model is extended by dedicated transport balances for soot and ash (1), by a discrete cake model describing changing soot and ash compositions over the cake height (2), by a phenomenological cake filtration model (3), by dedicated cake property models (4) and by a phenomenological model capturing the radial mobility of solids within the cake (5). Results of three different types of simulations are shown. First, the various sub-models are assessed in isolated simulation configurations. The combination of these shall serve as theoretical model validation. Second, isolated loading and passive regeneration simulations are performed.
Technical Paper

Brake Emission Testing Process – Assuring Repeatability and Reproducibility of Emission Measurement Results

2023-11-05
2023-01-1876
Non-exhaust emissions are clearly one of the focal points for the upcoming Euro 7 legislation. The new United Nations Global Technical Regulation (UN GTR) defining the framework for brake emission measurements is about to be officially published. The first amendment to this text is already on the way through the United Nations Economic Commission for Europe (UNECE) hierarchy for decision making. In real life, the final emission factor as the ultimate result of a test is influenced by inaccuracies of numerous parts of the measurement system as well as additional contributing factors like the performance of the particulate filter handling process, which might not be primarily related to equipment specifications.
Technical Paper

Control of Diesel Catalyzed Particulate Filter System I (The CPF System Influence Assessment According to a Regeneration Condition)

2005-04-11
2005-01-0661
Environmental standards concerning Suspended Particulate Matter (SPM) are continuously becoming stricter. The light-duty diesel passenger car market is rapidly increasing due to performance improvements and the economic advantages of the diesel engine. To meet EURO 4 diesel passenger car emission regulations, regeneration experiments of a catalyzed particulate filter (CPF) system have been performed with 2.0L common-rail diesel engine. For effective regeneration of the CPF system, we investigated the effects of various regeneration conditions on the system. Conditions such as exhaust gas temperature, oxygen/hydrocarbon concentrations, gas compositions, etc. were investigated. We found that the regeneration efficiency was improved when the exhaust gas temperature increased to more than 700°C during CPF regeneration using engine post injection. An additional amount of post injection increased the exhaust gas temperature and residual hydrocarbon content.
Technical Paper

Control of a Catalyzed Diesel Particulate Filter System III (Engine Bench Accelerated Aging Test Development for a Passenger Car Catalyzed Particulate Filter System)

2006-04-03
2006-01-0422
The key technical aspects of a catalyzed particulate filter (CPF) system development are software calibration for regeneration and component optimization for system performance. It is important that the optimized component specification be selected an early stage since the components have an effect on the overall regeneration strategy. Accordingly, in a catalyzed particulate filter system the washcoat and precious metal loading are main components that should be optimized at an early stage of the system development. An accelerated aging protocol is needed in order to properly evaluate the performance of various catalyst systems in a timely manner.
Technical Paper

Development New Organic Composite Materials with Excellent Long-Term High-Temperature Durability and Reliability for Automotive Parts

2018-04-03
2018-01-0151
In recent years, the emerging technology competitions in automotive industry are improving engine efficiency and electronizing for coping with stringent fuel-economy regulations. However, fuel-economy technologies such as engine down-sizing and numerous electronic parts entrust burden plastic materials acing as mainly electric insulation and housing to have to be higher performance, especially temperature endurance. Engineering plastics (EPs) have critical limitations in terms of degradation by heat. Heat-resisting additives in EP are generally used to be anti-degradation as activating non-radical decomposition of peroxide. However, it could not be effective way to impede the degradation in long term heat aging over 1,000 hours at high temperature above 180 °C. In this study, we suggested the new solution called ‘shield effect’ that is purposeful oxidation at the surface and local crystallization of EP to stop prevent penetrating oxygen to inside of that.
Technical Paper

Development Work on HMC'S Natural Gas-Fueled 1.5 L MPI DOHC Engine

1993-11-01
931869
Thii paper describes Hyundai's research and development work on the dedicated compressed natural gas (CNG) engine, A conventional light duty gasoline engine, a 1.5 liter four cylinder DOHC, has been modified to run on natural gas (NG) by a gas injection system and engine dynamometer test has been performed with emphasis on optimizations of compression ratio and intake port. Also presented are the results on the exhaust emissions characteristic and the purification performance of three-way catalytic converters developed for NG engine. Fuel composition and THC emissions are analyzed quantitatively using gas chromatography devices.
Technical Paper

Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems

2011-05-17
2011-01-1526
The acoustic simulation of internal combustion engine exhaust systems is an important aspect to meet customer expectations and legislation targets. One dimensional gas dynamic simulation tools are used for the calculation of the exhaust orifice noise in the early stages of the engine development process. This includes the prediction of the acoustic performance of individual components in the exhaust line. One common element used in exhaust systems to increase the acoustic damping is the plug flow muffler. This study looks at the prediction of acoustic performance of various plug mufflers at different flow velocities. These include a single plug muffler, a double plug muffler and an eccentric plug muffler with different porosities for the perforated sections. To this purpose a generic 3D cell approach was developed and applied.
Technical Paper

Development of Multi-Functioning Lean NOx Trap Catalysts for the On-board NH3 Generation

2018-04-03
2018-01-1430
Improved Lean NOx Trap (LNT) catalysts with enhanced NH3 generation feature were developed for the small diesel engine. The next generation LNT system needs to perform good NOx conversions over the wide temperature range including below 200°C for urban driving and above 400°C for motorway of real road driving. However, the extended use of BaO, a component of LNT known to be very effective for high temperature NOx storage, results in the decrease of low temperature NOx conversion due to the degradation of NO oxidation associating with sulfur over time. The improvement of the low-temperature LNT performance is a key requirement for the real driving emission control as the best operation temperature for urea-SCR is above ~250°C. In this study, our next generation LNT with new washcoat architecture has demonstrated improved NOx removal efficiencies under the wider operation temperature window than the current production technology.
Technical Paper

Development of Ultra-Stable Cu-SCR Aftertreatment System for Advanced Lean NOx Control

2019-04-02
2019-01-0743
The integration of SCR catalyst into diesel-particulate filter (SDPF) may be one of most viable ways to meet upcoming stringent emission regulations with new test protocols such as Worldwide harmonized Light vehicles Test Cycles (WLTC) and Real Driving Emissions (RDE) requirements. The chabazite-structured SSZ-13-based catalysts enabled the wide implementation of urea-SCR technology for mobile applications due to their robust thermal stability up to 750°C compared to the thermally unstable ZSM-5-based technologies. However, the thermally stable Cu-SSZ-13 catalyst starts losing its initial activity with the increase of aging time at 850°C, where the SCR catalyst on SDPF can possibly be exposed during filter regeneration under a drop-to-idle (DTI) condition. Therefore, more durable SCR catalysts that survive under higher temperatures have been strongly desired in automotive industry. Recently, we found Cu-exchanged high silica LTA revealed an excellent hydrothermal stability.
Technical Paper

Development of a Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds

2005-04-11
2005-01-1688
A new heat-resistant cast iron alloy has been developed for the exhaust manifolds of new passenger-car diesel engines. This development occurred because operating demands on exhaust manifolds have increased significantly over the past decade. These demands are due to higher exhaust gas temperatures resulting from tighter emission requirements, improved fuel efficiencies, and designs for higher specific engine power. These factors have led to much higher elevated temperature strength and oxidation resistance requirements on exhaust manifold alloys. Additionally, thermal fatigue that occurs directly as a result of thermal expansions and mechanical constraint has become an increasingly important issue. The research detailed in this paper focused on the optimization of the chemical composition of a Si-Mo ductile iron to improve the mechanical and physical properties for use in an engine exhaust manifold.
Technical Paper

Diffusion Supporting Passive Filter Regeneration- A Modeling Contribution on Coated Filters

2018-04-03
2018-01-0957
Wall flow particulate filters have been used as a standard exhaust aftertreatment device for many years. The interaction of particulate matter (PM) regeneration and catalytically supported reactions strongly depends on the given operating conditions. Temperature, species concentration and mass flow cause a change from advective to diffusive-controlled flow conditions and influence the rate controlling dominance of individual reactions. A transient 1D+1D model is presented considering advective and diffusive transport phenomena. The reaction scheme focuses on passive PM conversion and catalytic oxidation of NO. The model is validated with analytical references. The impact of back-diffusion is explored simulating pure advective and combined advective diffusive species transport. Rate approaches from literature are applied to investigate PM conversion at various operating conditions.
X