Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Methodology for Accelerated Thermo-Mechanical Fatigue Life Evaluation of Advanced Composites

2024-06-01
2024-26-0421
Thermo-mechanical fatigue and natural aging due to environmental conditions are difficult to simulate in an actual test with the advanced fiber-reinforced composites, where their fatigue and aging behavior is little understood. Predictive modeling of these processes is challenging. Thermal cyclic tests take a prohibitively long time, although the strain rate effect can be scaled well for accelerating the mechanical stress cycles. Glass fabric composites have important applications in aircraft and spacecraft structures including microwave transparent structures, impact-resistant parts of wing, fuselage deck and many other load bearing structures. Often additional additively manufactured features and coating on glass fabric composites are employed for thermal and anti-corrosion insulations. In this paper we employ a thermo-mechanical fatigue model based accelerated fatigue test and life prediction under hot to cold cycles.
Technical Paper

A Multi-Scale Computational Scheme for Prediction of High-Cycle Fatigue Damage in Metal Alloy Components

2024-06-01
2024-26-0430
Aerospace structural components grapple with the pressing issue of high-cycle fatigue-induced micro-crack initiation, especially in high-performance alloys like Titanium and super alloys. These materials find critical use in aero-engine components, facing a challenging combination of thermo-mechanical loads and vibrations that lead to gradual dislocations and plastic strain accumulation around stress-concentrated areas. The consequential vibration or overload instances can trigger minor cracks from these plastic zones, often expanding unpredictably before detection during subsequent inspections, posing substantial risks. Effectively addressing this challenge demands the capability to anticipate the consequences of operational life and aging on these components. It necessitates assessing the likelihood of crack initiation due to observed in-flight vibration or overload events.
Technical Paper

A Novel Approach for Mechanical Characterization of Angle-Ply Composite Laminates

2024-04-09
2024-01-2435
​Composites made of continuous fibers generally have higher strength-to-weight ratios in fiber directions as compared to those made of discontinuous fibers. However, the latter tend to display quasi-isotropic properties which can be of advantage when directions of mechanical loading can vary. For many real-world applications such as robust design of vehicle body components for crashworthiness, impact loads are stochastic in nature both in terms of magnitude and direction. Hence, in order to realize the true potential of laminated composites with continuous fibers, instead of orthotropic laminates which are most common due to the ease of design and manufacturing, angle-ply laminates are necessary.
Journal Article

A Study into the Mechanical Behavior of Adhesively-Bonded Jute Fiber-Reinforced Composite

2015-04-14
2015-01-0729
Rapid progress in the interdisciplinary field of automotive engineering and the pressing need for an environmental friendly alternative to metal and synthetic fiber-reinforced composites for vehicle structure have triggered recent research in the field of natural fiber-based composites. Their potential advantages are attributed to their light weight, low cost and biodegradability. However, their usage in present day automotive systems is restricted due a lower magnitude range of mechanical properties and limited study in this area. In contrast to mechanical joints, the adhesively bonded joints aid in reducing stress concentration, joining of dissimilar materials, corrosion prevention, weight reduction and a smoother finish. Thus, in the present study, failure load, and mean shear stress of single lap shear and double lap shear joints as a function of joint overlap length, are evaluated using a two part epoxy adhesive made by Huntsman.
Technical Paper

A Study on Impact Perforation Resistance of Jute-Polyester Composite Laminates

2014-04-01
2014-01-1055
Natural fiber-based composites such as jute-polyester composites have the potential to be more cost-effective and environment-friendly substitutes for glass fiber-reinforced composites which are commonly found in many applications. In an earlier study (Mache and Deb [1]), jute-polyester composite tubes of circular and square cross-sections were shown to perform competitively under axial impact loading conditions when compared to similar components made of bidirectional E-glass fiber mats and thermo-setting polyester resin. For jute-reinforced plastic panels to be feasible solutions for automotive interior trim panels, laminates made of such materials should have adequate perforation resistance. In the current study, a systematic characterization of jute-polyester and glass-polyester composite laminates made by compression molding is at first carried out under quasi-static tensile, compressive and flexural loading conditions.
Technical Paper

Assessing the Structural Feasibility and Recyclability of Flax/PLA Bio-Composites for Enhanced Sustainability

2024-06-01
2024-26-0407
Bio-composites have gained significant attention within the aerospace industry due to their potential as a sustainable solution that addresses the demand for lightweight materials with reduced environmental impact. These materials blend natural fibers sourced from renewable origins, such as plant-based fibers, with polymer matrices to fabricate composite materials that exhibit desirable mechanical properties and environmental friendliness. The aerospace sector's growing interest in bio-composites originates from those composites’ capacity to mitigate the industry's carbon footprint and decrease dependence on finite resources. This study aims to investigate the suitability of utilizing plant derived flax fabric/PLA (polylactic acid) matrix-based bio-composites in aerospace applications, as well as the recyclability potential of these composites in the circular manufacturing economy.
Technical Paper

Behavior of Adhesively Bonded Steel Double Hat-Section Components under Axial Quasi-Static and Impact Loading

2016-04-05
2016-01-0395
An attractive strategy for joining metallic as well as non-metallic substrates through adhesive bonding. This technique of joining also offers the functionality for joining dissimilar materials. However, doubts are often expressed on the ability of such joints to perform on par with other mechanical fastening methodologies such as welding, riveting, etc. In the current study, adhesively-bonded single lap shear (SLS), double lap shear (DLS) and T-peel joints are studied initially under quasi-static loading using substrates made of a grade of mild steel and an epoxy-based adhesive of a renowned make (Huntsman). Additionally, single lap shear joints comprised of a single spot weld are tested under quasi-static loading. The shear strengths of adhesively-bonded SLS joints and spot-welded SLS joints are found to be similar. An important consideration in the deployment of adhesively bonded joints in automotive body structures would be the performance of such joints under impact loading.
Technical Paper

Behavior of Adhesively Bonded Steel Double-Hat Section Components under Lateral Impact Loading

2018-04-03
2018-01-1447
Recent experimental studies on the behavior of adhesively-bonded steel double-hat section components under axial impact loading have produced encouraging results in terms of load-displacement response and energy absorption when compared to traditional spot-welded hat- sections. However, it appears that extremely limited study has been carried out on the behavior of such components under transverse impact loading keeping in mind applications such as automotive body structures subject to lateral/side impact. In the present work, lateral impact studies have been carried out in a drop-weight test set-up on adhesively-bonded steel double-hat section components and the performance of such components has been compared against their conventional spot-welded and hybrid counterparts. It is clarified that hybrid components in the present context refer to adhesively-bonded hat-sections with a few spot welds only aimed at preventing catastrophic flange separations.
Technical Paper

Development Of A Practical Multi-disciplinary Design Optimization (MDO) Algorithm For Vehicle Body Design

2016-04-05
2016-01-1537
The present work is concerned with the objective of developing a process for practical multi-disciplinary design optimization (MDO). The main goal adopted here is to minimize the weight of a vehicle body structure meeting NVH (Noise, Vibration and Harshness), durability, and crash safety targets. Initially, for simplicity a square tube is taken for the study. The design variables considered in the study are width, thickness and yield strength of the tube. Using the Response Surface Method (RSM) and the Design Of Experiments (DOE) technique, second order polynomial response surfaces are generated for prediction of the structural performance parameters such as lowest modal frequency, fatigue life, and peak deceleration value. The optimum solution is then obtained by using traditional gradient-based search algorithm functionality “fmincon” in commercial Matlab package.
Technical Paper

Energy-Based Criteria for Crashworthiness Design of Aluminum Intensive Space Frame Vehicles

2004-03-08
2004-01-1521
Space frame type vehicle construction with extruded aluminum members holds promise in terms of desirable vibration-resistant and crashworthiness characteristics. Efficient design of such vehicles for superior frontal crash performance can be accomplished by judicious use of validated finite element and lumped parameter modeling and analysis. However, design iterations can be reduced considerably by employing energy-absorption targets for key members such as front rails in arriving at the initial design concept. For the NCAP (New Car Assessment Program) test procedure, a constraint is laid in terms of achieving a desirable level of vehicle peak deceleration for occupant safety. Using the information obtained through analysis, a numerical target can be set for energy to be absorbed by front rails. For this energy target, a new relationship is then derived which can be utilized for preliminary design of rail cross-section and material strength.
Technical Paper

Enhancement of Physical and Mechanical Attributes of a Natural Fiber-Reinforced Composite for Engineering Applications

2024-04-09
2024-01-2237
A natural fiber based polymer composite has the advantage of being more environment-friendly from a life cycle standpoint when compared to composites reinforced with widely-used synthetic fibers. The former category of composites also poses reduced health risks during handling, formulation and usage. In the current study, jute polymer laminates are studied, with the polymeric resin being a general purpose polyester applied layer-by-layer on bi-directionally woven jute plies. Fabrication of flat laminates following the hand layup method combined with compression molding yields a jute polymer composite of higher initial stiffness and tensile strength, compared to commonly used plastics, coupled with consistency for engineering design applications. However, the weight-saving potential of a lightweight material such as the current jute-polyester composite can be further enhanced through improvement of its behavior under mechanical loading.
Technical Paper

Multi-Scale Modeling of Selective Laser Melting Process

2024-06-01
2024-26-0415
The Selective Laser Melting (SLM) process is employed in high-precision layer-by-layer Additive Manufacturing (AM) on powder bed and aims to fabricate high-quality structural components. To gain a comprehensive understanding of the process and its optimization, both modeling and simulation in conjunction with extensive experimental studies along with laser calibration studies have been attempted. Multiscale and multi-physics-based simulations have the potential to bring out a new level of insight into the complex interaction of laser melting, solidification, and defect formation in the SLM parts. SLM process encompasses various physical phenomena during the formation of metal parts, starting with laser beam incidence and heat generation, heat transfer, melt/fluid flow, phase transition, and microstructure solidification. To effectively model this Multiphysics problem, it is imperative to consider different scales and compatible boundary conditions in the simulations.
Journal Article

Prediction of Crash Performance of Adhesively-Bonded Vehicle Front Rails

2022-03-29
2022-01-0870
Adhesive bonding provides a versatile strategy for joining metallic as well as non-metallic substrates, and also offers the functionality for joining dissimilar materials. In the design of unibody vehicles for NVH (Noise, Vibration and Harshness) performance, adhesive bonding of sheet metal parts along flanges can provide enhanced stiffening of body-in-white (BIW) leading to superior vibration resistance at low frequencies and improved acoustics due to sealing of openings between flanges. However, due to the brittle nature of adhesives, they remain susceptible to failure under impact loading conditions. The viability of structural adhesives as a sole or predominant mode of joining stamped sheet metal panels into closed hollow sections such as hat-sections thus remains suspect and requires further investigation.
Technical Paper

Prediction of the Behaviors of Adhesively Bonded Steel Hat Section Components under Axial Impact Loading

2017-03-28
2017-01-1461
Adhesively bonded steel hat section components have been experimentally studied in the past as a potential alternative to traditional hat section components with spot-welded flanges. One of the concerns with such components has been their performance under axial impact loading as adhesive is far more brittle as compared to a spot weld. However, recent drop-weight impact tests have shown that the energy absorption capabilities of adhesively bonded steel hat sections are competitive with respect to geometrically similar spot-welded specimens. Although flange separation may take place in the case of a specimen employing a rubber toughened epoxy adhesive, the failure would have taken place post progressive buckling and absorption of impact energy.
Technical Paper

Selective Laser Melting Based Additive Manufacturing Process Diagnostics using In-line Monitoring Technique and Laser-Material Interaction Model

2024-06-01
2024-26-0420
Selective Laser Melting (SLM) has gained widespread usage in aviation, aerospace, and die manufacturing due to its exceptional capacity for producing intricate metal components of highly complex geometries. Nevertheless, the instability inherent in the SLM process frequently results in irregularities in the quality of the fabricated components. As a result, this hinders the continuous progress and wider acceptance of SLM technology. Addressing these challenges, in-process quality control strategies during SLM operations have emerged as effective remedies for mitigating the quality inconsistencies found in the final components. This study focuses on utilizing optical emission spectroscopy and IR thermography to continuously monitor and analyze the SLM process within the powder bed, with the aim of strengthening process control and minimizing defects.
Technical Paper

Use of Truncated Finite Element Modeling for Efficient Design Optimization of an Automotive Front End Structure

2015-04-14
2015-01-0496
The present work is concerned with the objective of multi disciplinary design optimization (MDO) of an automotive front end structure using truncated finite element model. A truncated finite element model of a real world vehicle is developed and its efficacy for use in design optimization is demonstrated. The main goal adopted here is minimizing the weight of the front end structure meeting NVH, durability and crash safety targets. Using the Response Surface Method (RSM) and the Design Of Experiments (DOE) technique, second order polynomial response surfaces are generated for prediction of the structural performance parameters such as lowest modal frequency, fatigue life, and peak deceleration value.
X