Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Multi-Scale Modeling of Selective Laser Melting Process

2024-06-01
2024-26-0415
The Selective Laser Melting (SLM) process is employed in high-precision layer-by-layer Additive Manufacturing (AM) on powder bed and aims to fabricate high-quality structural components. To gain a comprehensive understanding of the process and its optimization, both modeling and simulation in conjunction with extensive experimental studies along with laser calibration studies have been attempted. Multiscale and multi-physics-based simulations have the potential to bring out a new level of insight into the complex interaction of laser melting, solidification, and defect formation in the SLM parts. SLM process encompasses various physical phenomena during the formation of metal parts, starting with laser beam incidence and heat generation, heat transfer, melt/fluid flow, phase transition, and microstructure solidification. To effectively model this Multiphysics problem, it is imperative to consider different scales and compatible boundary conditions in the simulations.
Technical Paper

Optical Characterization of PFI Gasoline Sprays: Effect of Injection Pressure

2010-09-28
2010-32-0067
In the present study, PFI injectors which are suitable for small engines were characterized to study the effect of pressure on various spray parameters. Two plate-type PFI injectors were studied: one with two orifices, and the other with four orifices. The nozzle orifice sizes were determined by microscopy. The fuel quantity injected at pressures of 200 kPa, 500 kPa and 800 kPa, were measured by collecting the fuel, for injection pulses of different durations. The spray structure of the PFI sprays was determined by shadowgraphy. A single pulsed Nd:YAG laser in conjunction with fluorescent diffuser optics was used as the light source for shadowgraphy. Backlit images of the spray were obtained at various times after the start of injection using a CCD camera. This was done for sprays at different pressures, and different pulse durations. The spray angle, and spray tip penetration were determined from the processed shadowgraphy images.
Technical Paper

Selective Laser Melting Based Additive Manufacturing Process Diagnostics using In-line Monitoring Technique and Laser-Material Interaction Model

2024-06-01
2024-26-0420
Selective Laser Melting (SLM) has gained widespread usage in aviation, aerospace, and die manufacturing due to its exceptional capacity for producing intricate metal components of highly complex geometries. Nevertheless, the instability inherent in the SLM process frequently results in irregularities in the quality of the fabricated components. As a result, this hinders the continuous progress and wider acceptance of SLM technology. Addressing these challenges, in-process quality control strategies during SLM operations have emerged as effective remedies for mitigating the quality inconsistencies found in the final components. This study focuses on utilizing optical emission spectroscopy and IR thermography to continuously monitor and analyze the SLM process within the powder bed, with the aim of strengthening process control and minimizing defects.
X