Refine Your Search

Topic

Search Results

Technical Paper

Boost Port Injection of LPG in a Two - Stroke SI Engine for Reduction in HC Emissions

2013-04-08
2013-01-0584
Short-circuiting of the fuel air mixture during scavenging is the main reason for high fuel consumption and hydrocarbon (HC) emissions in two-stroke SI engines. Though direct injection of the fuel after the closure of ports has advantages, it is costly and complex. In this work, in a 2S-SI, single cylinder, automotive engine, LPG (liquefied Petroleum Gas) was injected through the boost port to reduce short-circuiting losses. A fuel injector was located on one of the boost ports and the air alone was fed through the other transfer and boost ports for scavenging. Experiments were done at 25% and 70% throttle openings with different injection timings and optimal spark timing at 3000 rpm. Boost port injection (BPI) of LPG reduced HC emissions at all conditions as compared to LPG-MI (Manifold Injection). Particularly significant reductions were seen at high throttle conditions and rich mixtures. HC reductions with BPI were 19% and 25% as compared to LPG-MI and gasoline-MI respectively.
Technical Paper

Charge Dilution Strategy to Extend the Stable Combustion Regime of a Homogenous Charge Compression Ignited Engine Operated With Biodiesel

2023-09-29
2023-32-0132
The present research explores the application of biodiesel fuel in a stationary agricultural engine operated under the Homogenous charge compression ignition (HCCI) mode. To achieve HCCI combustion, a fuel vaporizer and a high-pressure port fuel injection system are employed to facilitate rapid evaporation of the biodiesel fuel. The low volatility of biodiesel is one of the significant shortcomings, which makes it inevitable to use a fuel vaporizer at 380oC. Consequently, the charge temperature is high enough to promote advanced auto-ignition. Further, the high reactivity of biodiesel favors early auto-ignition of the charge. Besides, biodiesel exhibits a faster burn rate due to its oxygenated nature. The combined effect of advanced auto-ignition and faster burn rate resulted in a steep rise in the in-cylinder pressures, leading to abnormal combustion above 20% load. Diluting the charge reduces reactivity and intake oxygen concentration, facilitating load extension.
Journal Article

Composition Effects on Thermo-Physical Properties and Evaporation of Suspended Droplets of Biodiesel Fuels

2014-10-13
2014-01-2760
From the energy security and environment standpoint, the biodiesel fuels derived from vegetable oils or animal fats appear to be promising alternative to fossil diesel. Although the engine experiments prove their viability, the scientific data base for characterizing biodiesel combustion is limited. Detailed studies on the characterization of biodiesel fuels and their effects on fundamental engine processes like droplet evaporation and combustion are essential. The present study evaluates the useful thermo-physical properties and droplet evaporation characteristics of biodiesel fuels. The droplet evaporation measurements are carried out using suspended droplet experiments on five biodiesel fuels of Indian origin viz. jatropha, pongamia (karanja), neem, mahua and palm. The droplet evaporation rates of these fuels are related to properties such as binary diffusivity and molecular weight, which in turn depend on their fatty acid composition.
Technical Paper

Computer Simulation of Gasoline-Direct-Injected (Gdi) Extended Expansion Engine

2005-01-19
2005-26-057
This paper deals mainly with computer simulation of processes of Gasoline Direct Injection (GDI) associated with Extended Expansion Engine (EEE) concept applied to a four-stroke, single-cylinder SI engine. In the case of standard SI engines, part-load brake thermal efficiencies are low due to higher pumping losses. The pumping losses can be reduced by operating the engine always at full throttle as done in extended expansion engine. In extended expansion engine, higher Geometric Expansion Ratio (GER) compared to Effective Compression Ratio (ECR) is responsible for better performance at part loads. Usually, in this engine, by delaying inlet valve closure timing along with reduced clearance volume, extended expansion is achieved. Experimentally many researchers have proved that variable valve timing and variable compression ratio techniques adopted in SI engines, improves the part- load performance greatly.
Technical Paper

Effect of FFA of Jatropha Curcas L Oil on Performance and Emissions of a DI Diesel Engine

2012-04-16
2012-01-1318
Oil with high free fatty acid (FFA) content may not be an appropriate contestant for biodiesel production due to poor process yield. The high FFA content (≻1%) will cause soap formation and the separation of products will be exceedingly difficult, and as a result, it has low yield of biodiesel product. In order to increase the process yield, pretreatment setup is required. This involves additional cost and will increase overall fuel price. Hence crude vegetable oils having high FFA can be blended with diesel for effectual employment in diesel engines. In this context, Jatropha Curcas L, non-edible tree-based oil with higher FFA content, can be considered as one of the prominent blending sources for diesel. The primary objective of the present work is to analyze the effect of FFA content of crude Jatropha Curcas L oil (CJO) on performance and emission characteristics of a direct injection (DI) diesel engine.
Technical Paper

Effect of Split Injection on Combustion and Performance of a Biogas-Diesel Fuelled PPCCI Engine

2015-09-06
2015-24-2453
In this experimental work the effect of double injection of diesel in a biogas-diesel partially premixed charge compression ignition (BDPPCCI) engine was studied. Biogas was inducted along with air while diesel was injected through a common rail system using an open electronic control unit. Experiments were done at a fixed brake mean effective pressure of 2 bar and an intake charge temperature of 40°C. The effect of start of injection (SOI) of first and second injection pulses and also the biogas energy share (BGES) were evaluated. Experiments were also done in the BDPPCCI mode with diesel being injected in a single pulse and in the biogas-diesel dual fuel (BDDF) mode for comparison. The thermal efficiency in the BDPPCCI mode was better with double injection of diesel as compared to single pulse injection due to better combustion phasing. Improved charge homogeneity and reduced wall wetting of diesel lowered the smoke emission levels with split injection.
Technical Paper

Effects of Oxidation Upon Long-term Storage of Karanja Biodiesel on the Combustion and Emission Characteristics of a Heavy-Duty Truck Diesel Engine

2021-09-21
2021-01-1200
The presence of unsaturated methyl esters in biodiesel makes it susceptible to oxidation and fuel quality degradation upon long-term storage. In the present work, the effects of oxidation of Karanja biodiesel upon long-term storage on the combustion and emission characteristics of a heavy-duty truck diesel engine are studied. The Karanja biodiesel is stored for one year in a 200 litres steel barrel at room conditions to mimic commercial storage conditions. The results obtained show that compared to diesel, the start of injection of fresh and aged biodiesels are advanced by ~2-degree crank angle, and the ignition delay time is reduced. Aged biodiesel showed a slightly smaller ignition delay compares to fresh biodiesel. The fuel injection and combustion characteristics of fresh and aged biodiesels were similar at all the load conditions. Both fresh and aged biodiesels produced higher oxides of nitrogen (NOx) and lower smoke emissions compared to diesel.
Technical Paper

Experimental Investigation on Reactivity Controlled Compression Ignition with Oxygenated Alternative Fuel Blends to Reduce Unburned Hydrocarbon Emissions

2021-09-21
2021-01-1203
For controlling oxides of nitrogen (NOx) and particular matter (PM) emissions from diesel engines, various fuel and combustion mode modification strategies are investigated in the past. Low temperature combustion (LTC) is an alternative combustion strategy that reduces NOx and PM emissions through premixed lean combustion. Dual fuel reactivity-controlled compression ignition (RCCI) is a promising LTC strategy with better control over the start and end of combustion because of reactivity and equivalence ratio stratification. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are significantly higher in RCCI, especially at part-load conditions. The present work intends to address this shortcoming by utilizing oxygenated alternative fuels. Considering the limited availability and higher cost, replacing conventional fuels completely with alternative fuels is not feasible.
Technical Paper

Experimental Investigations on the Effects of Multiple Injections in Reactivity-Controlled Compression Ignition in a Light-Duty Engine Operated with Gasoline/Diesel

2020-09-25
2020-01-5072
Reactivity-Controlled Compression Ignition (RCCI) is a promising low-temperature combustion (LTC) strategy to mitigate the oxides of nitrogen (NOx) and soot emissions. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are much higher in RCCI compared to the conventional diesel combustion (CDC). In this present work, multiple injections of the direct-injected (DI) diesel fuel are explored as a potential method to reduce the high HC and CO emissions. Although significant research works have been done in the past on RCCI combustion in different engine types, investigations on small air-cooled diesel engines are very limited. In the present work, a production light-duty air-cooled diesel engine is modified to run in RCCI, with diesel as the high-reactivity fuel and gasoline as the low-reactivity fuel. Before modifications, the engine is run in CDC with production settings. In RCCI, experiments are initially performed with single-pulse DI.
Technical Paper

Experimental Investigations on the Effects of Water Injection in a Light-Duty Diesel Engine Operated with Biodiesel Fuel

2021-09-21
2021-01-1207
In-cylinder emission control methods for simultaneous reduction of oxides of nitrogen (NOx) and particulate matter (PM) are gaining attention due to stringent emission targets and the higher cost of after-treatment systems. In addition, there is a renewed interest in using carbon-neutral biodiesel due to global warming concerns with fossil diesel. The bi-directional NOx-PM trade-off is reduced to a unidirectional higher NOx emission problem with biodiesel. The effect of water injection with biodiesel with low water quantities is relatively unexplored and is attempted in this investigation to mitigate higher NOx emissions. The water concentrations are maintained at 3, 6, and 9% relative to fuel mass by varying the pulse width of a low-pressure port fuel injector. Considering the corrosive effects of water at higher concentrations, they are maintained below 10% in the present work.
Technical Paper

Experimental Study of Cycle-to-Cycle Variations in a Spark-Ignition Engine Fueled with Biogas and Surrogate of Bio-methane

2022-06-07
2022-01-5049
Internal combustion engines play a major role in biogas-based stationary power generation applications in rural areas, and serious progress on effective utilization of bio-resources by considering engine stability is not achieved yet. In the present study, combustion characteristics and cycle-to-cycle variations (CCVs) of a spark-ignition (SI) engine fueled with gasoline, biogas, and surrogate of bio-methane are analyzed. A single-cylinder, four-stroke SI engine (with a flexible gaseous fuel system) was operated at a couple of load points (8 Nm and 11.5 Nm) with a rotational speed of 1500 rpm. CCVs are analyzed using a statistical approach considering 1000 consecutive engine cycles for each operating condition. Results at 8 Nm showed relatively higher CCVs of indicated mean effective pressure (IMEP), peak in-cylinder pressure (Pmax), and flame initiation duration (FID) for biogas compared to methane.
Technical Paper

Fuel Injection Strategies for Improving Performance and Reducing Emissions of a Low Compression Ratio Diesel Engine

2021-09-21
2021-01-1166
The present work investigates the effects of lowering the compression ratio (LCR) from 18:1 to 14:1 and optimizing the fuel injection parameters across the operating range of a mass production light-duty diesel engine. The results were quantified for a regulatory Indian drive cycle using a one-dimensional simulation tool. The results show that the LCR approach can simultaneously reduce the oxides of nitrogen (NOx) and soot emissions by 28% and 64%, respectively. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions increased significantly by 305% and 119%, respectively, with a 4.5% penalty in brake specific fuel consumption (BSFC). Hence, optimization of fuel injection parameters specific to LCR operation was attempted. It was evident that advancing the main injection timing and reducing the injection pressure at low-load operating points can significantly help to reduce BSFC, HC and CO emissions with a slight increase in the NOx emissions.
Technical Paper

Impact of Ammonia Share on Combustion, Cycle-to-Cycle Variations, and Performance Characteristics of Methane-Fueled SI Engine

2023-12-07
2023-01-5085
Ammonia is one of the most promising zero carbon fuels for meeting carbon neutrality targets and zero carbon emissions. Ammonia has gained a lot of research interest recently as a hydrogen energy carrier, and direct use of ammonia as a fuel in engines will aid the transformation toward sustainable energy future. In this work, the effect of ammonia shares on combustion and performance characteristics of methane-fueled SI engine is evaluated by increasing the ammonia share by small fractions (0 to 30% by volume) in the fuel mixture (CH4/NH3 blend). Experiments were performed at constant engine load of 8 Nm (BMEP of 1.52 bar), while maintaining constant engine speed (1500 rpm), stoichiometric operation (λ = 1), and optimum spark advance for MBT conditions.
Technical Paper

Impact of Hydrogen Energy Fractions on Cycle-to-Cycle Variations in Biogas-Fueled Spark Ignition Engine

2023-10-25
2023-01-5075
The limitations related to the cost-effectiveness and technological feasibility of upgrading biogas to bio-methane for rural power generation applications have prompted researchers to explore alternative approaches for improving the quality of biogas fuel. This study focuses on evaluating the effect of hydrogen enrichment on combustion characteristics and cycle-to-cycle combustion variations in a single-cylinder spark ignition engine fueled with biogas (60% CH4 and 40% CO2). The engine was run at a constant operating load of 6 Nm, with a compression ratio of 10:1 and an engine speed of 1500 rpm. To establish a baseline for comparison, engine characteristics were initially assessed using pure methane fuel. Subsequently, the share of hydrogen in the biogas fuel mixture was incrementally increased on the volumetric basis from 0% to 30% and experiments were performed to study the effects of these variations on combustion behavior.
Technical Paper

Influence of Injection Parameters on the Performance and Emissions of a Direct Injection Two Stroke SI Engine

2016-04-05
2016-01-1052
Direct injection of fuel has been seen as a potential method to reduce fuel short circuiting in two stroke engines. However, most work has been on low pressure injection. In this work, which employed high pressure direct injection in a small two stroke engine (2S-GDI), a detailed study of injection parameters affecting performance and combustion has been presented based on experiments for evaluating its potential. Influences of injection pressure (IP), injection timing (end of injection - EOI) and location of the spark plug at different operating conditions in a 199.3 cm3 automotive two stroke engine using a real time open engine controller were studied. Experiments were conducted at different throttle positions and equivalence ratios at a speed of 3000 rpm with various sets of injection parameters and spark plug locations. The same engine was also run in the manifold injection (2S-MI) mode under similar conditions for comparison.
Technical Paper

Investigations on Dual Fuel Reactivity Controlled Compression Ignition Engine using Alternative Fuels Produced from Waste Resources

2022-08-30
2022-01-1095
Currently, alternative fuels produced from waste resources are gaining much attention to replace depleting fossil fuels. The disposal of waste plastic poses severe environmental problems across the globe. The energy embodied in waste plastics can be converted into liquid fuel by pyrolysis. The present work explores the possibility of utilizing waste plastic oil (WPO) produced from municipal plastic wastes and waste cooking oil (WCO) biodiesel produced from used cooking oil in a dual fuel reactivity-controlled compression ignition (RCCI) mode. A single-cylinder light-duty diesel engine used for agricultural water pumping applications is modified to run in RCCI through suitable intake and fuel injection systems modifications. Alternative fuel blends, viz. WPO and WCO biodiesel with 20 vol. % in gasoline and diesel is used as a port and direct-injected fuels in RCCI. The premixed ratio and direct-injected fuel timings are optimized to achieve maximum thermal efficiency.
Technical Paper

NOx Mitigation Strategy for Oxidized Biodiesel in a Heavy-Duty Truck Diesel Engine

2022-08-30
2022-01-1084
Unsaturated methyl esters in biodiesel make it susceptible to oxidation and fuel quality degradation upon long-term storage. It is almost impossible to use biodiesel for commercial applications immediately after production. The lead time between biodiesel production and usage is generally high, causing auto-oxidation and fuel quality degradation. Hence any onsite improvement in fuel quality should be tested with aged biodiesel. To avoid the food versus fuel debate, non-edible oil feedstocks are preferable for producing biodiesel. However, biodiesel from non-edible oil sources has more unsaturated methyl ester constituents. The traditional trade-off between oxides of nitrogen (NOx) and soot emissions in conventional diesel combustion is reduced to a more severe NOx problem with biodiesel. In the present study, NOx mitigation through fuel modifications is studied for oxidized biodiesel produced from a non-edible oil, Karanja.
Technical Paper

Numerical Investigations on Split Injection Strategies to Reduce CO and Soot Emissions of a Light-Duty Small-Bore Diesel Engine Operated in NADI-PCCI Mode

2022-03-29
2022-01-0458
Premixed Charge Compression Ignition (PCCI) is a promising LTC strategy to reduce NOx and soot emissions without relying on after-treatment devices. One major drawback of PCCI is high HC and CO emissions resulting from fuel-wall impingement due to early injection of diesel. Narrow-angle direct injection (NADI) helps reduce the wall wetting of fuel. But it is effective only at lower loads. At mid and higher loads, it increases soot and CO emissions in small-bore engines due to the formation of fuel-rich pockets in the piston bowl region. This problem is addressed using a split injection strategy in the present work. A 3-D CFD model is developed and validated with experimental data at two load conditions. Simulations are performed using CONVERGE CFD software. Split injection strategies are explored using wide (148 deg) and narrow (88 deg) spray included angles.
Technical Paper

Numerical and Experimental Investigation of Residual Stresses in Cold Formed Truck Frame Rail Sections

2013-11-27
2013-01-2796
Cold formed carbon steel C sections are often employed as load carrying structural members in heavy commercial trucks. The cold forming operations employed during the making of these members generate certain amount of residual stresses throughout the sections. As the residual stresses play a significant role in determining the structural behavior of truck frame rail members, a careful assessment of residual stresses resulting from cold forming operation is needed. In the present investigation, residual stresses in frame rail corner sections were numerically predicted with the help of non-linear Finite Element (FE) analysis in ABAQUS and compared with the experimentally measured residual stress values using X-ray diffraction technique. It has been observed that the numerically predicted residual stresses are in agreement with the experimentally measured residual stresses in forming direction.
Technical Paper

Parametric Investigation of Various Factors Affecting Engine Performance and Emissions in a Homogeneous Charge with Direct Injection Strategy at High Load: A CFD Approach

2022-08-30
2022-01-1048
Over the years, much progress has been made in automotive vehicle technology to achieve high efficiency and clean combustion. Reactivity controlled compression ignition (RCCI) is one of the most widely studied high-efficiency, clean combustion strategies. However, complex dual-fuel injection systems and associated controls, high unburned hydrocarbon (UHC), and carbon monoxide (CO) emissions limit RCCI use in practical applications. Recently, single fuel RCCI strategies are gaining more attention as the above shortcomings are effectively addressed. Homogeneous charge with direct injection (HCDI) is a single fuel RCCI strategy that results in high thermal efficiency and lower UHC and CO emissions. In HCDI, the port-injected diesel fuel vapour and air are inducted during the intake stroke and ignited with direct-injected diesel fuel near the end of the compression stroke. However, high oxides of nitrogen (NOx) make HCDI less viable for practical applications.
X