Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Alternatives in Battery Communication Protocols

2017-03-28
2017-01-1212
The automotive industry is moving from fossil carburant to electric drive trains due to the stringent CO2 reduction policies. In this context, the electric energy storage becomes one of the key parameters of successful rolling out electrified vehicles. Typical battery management systems comprises of battery cells measurement and monitoring, balancing function, temperature monitoring, together with the State of Charge and State of Health estimations based on the given measurements. Together with the functions above, a robust internal IC communication protocol is one of the key parameters to guarantee battery performance as well as safety. This paper focuses on the automotive battery communication system. On one side, the importance of the communication system and its impact in the EDT (electric drive train) is discussed including safety aspects. Later on, the different communication methods up to date are analyzed to further understand their limitations.
Technical Paper

Electronic Throttle Control With Contactless Position Sensor And Smart Power Full-Bridge

2001-03-05
2001-01-0984
Electronic throttle systems are becoming more and more important in today's motor vehicles. These systems consist of: a throttle valve with an electrical actuator and a transmission a position feedback an electronic acceleration pedal an electronic control unit (ECU) a semiconductor h-bridge for driving the motor. The electronic acceleration pedal gives a set point to the ECU. A control signal is generated and moves the motor of the throttle valve with a semiconductor h-bridge to the requested position. The voltage drop of a potentiometer is used here as control feedback signal. The potentiometer in the throttle valve is moved very often and has a rough environment like high temperature and vibrations. Therefore this system has a lot of problems with mechanical attrition and reliability during the whole system lifetime. The accuracy of the position control decreases over time.
Journal Article

Functional Safety Compliant ECU Design for Electro-Mechanical Brake (EMB) System

2013-09-30
2013-01-2062
In this paper, we propose a hardware and a software design method considering functional safety for an electro-mechanical brake (EMB) control system which is used as a brake actuator in a brake-by-wire (BBW) system. A BBW system is usually composed of electro-mechanical calipers, a pedal simulator, and a control system. This simple by-wire structure eliminates the majority of bulky hydraulic brake devices such as boosters and master cylinders. The other benefit of a BBW system is its direct and independent response; this leads to enhanced controllability, thus resulting in not only improved basic braking performance but also considerably easier cooperative regenerative braking in hybrid, fuel-cell, and electric cars. The importance of a functional safety based approach to EMB electronic control unit (ECU) design has been emphasized because of its safety critical functions, which are executed with the aid of many electric actuators, sensors, and application software.
Technical Paper

Future Engine Control Enabling Environment Friendly Vehicle

2011-04-12
2011-01-0697
The aim of this paper is to compile the state of the art of engine control and develop scenarios for improvements in a number of applications of engine control where the pace of technology change is at its most marked. The first application is control of downsized engines with enhancement of combustion using direct injection, variable valve actuation and turbo charging. The second application is electrification of the powertrain with its impact on engine control. Various architectures are explored such as micro, mild, full hybrid and range extenders. The third application is exhaust gas after-treatment, with a focus on the trade-off between engine and after-treatment control. The fourth application is implementation of powertrain control systems, hardware, software, methods, and tools. The paper summarizes several examples where the performance depends on the availability of control systems for automotive applications.
Technical Paper

GPTA - A Flexible New Timer Approach for Automotive Applications

2000-03-06
2000-01-1240
Today's requirements for engine management controllers are increasing in various aspects. Stronger emission standards and diagnosis requirements demand more complex control algorithms, faster system response times, better usage of sensor information throughout the system and higher accuracy of actuator stimuli. Despite that, new solutions are needed to answer the requirement for higher cost effectiveness, flexibility and reusability. The trade-off between cost and functionality is constantly being reviewed when choosing the right microcontroller to operate with an ECU. Integration of more complex and flexible functionality into the microcontroller helps to reduce the need for custom ASICs and thus reduce the overall system cost. In order to reduce the demands on CPU throughput within the microcontroller, manufacturers have introduced smart peripherals that off-load some of the work of the CPU into the peripherals.
Technical Paper

HEV Architectures - Power Electronics Optimization through Collaboration Sub-topic: Inverter Design and Collaboration

2010-10-19
2010-01-2309
As the automotive industry quickly moves towards hybridized and electrified vehicles, the optimal integration of power electronics in these vehicles will have a significant impact not only on the cost, performance, reliability, and durability; but ultimately on customer acceptance and market success of these technologies. If properly executed with the right cost, performance, reliability and durability, then both the industry and the consumer will benefit. It is because of these interdependencies that the pace and scale of success, will hinge on effective collaboration. This collaboration will be built around the convergence of automotive and industrial technology. Where real time embedded controls mixes with high power and voltage levels. The industry has already seen several successful collaborations adapting power electronics to the automotive space in target vehicles.
Technical Paper

High Performance Code Generation for Audo, an Automotive μController from Infineon Technologies

2000-03-06
2000-01-0393
The demands of the automotive market are decreasing the time-to-market required from the initial concept of new control systems to their implementation. The goal of automotive companies is to constantly reduce the development time to reap the full economic and strategic benefits of being quicker to market. The target is to reach a development time of less than 12 months for some applications. At the same time, the complexity of these new systems is growing almost exponentially. While new techniques like model-based control design with executable specifications, rapid control prototyping and hardware-in-the-loop simulation have helped significantly streamline the development process, the new strategies are still being transferred to the production target by hand. During an early project phase, automotive customers also need to explore different silicon architectures provided by semiconductor manufacturers to select the vendors who can offer the best solution at the lowest price.
Technical Paper

Improvement Potential at Electronic Control Units by Integration Across Clusters and Applications

2014-11-11
2014-32-0071
The market potential for products such as scooters and small motorcycles is already self-sustaining. However, other applications for small engines can be more fragmented with a wide variety of requirements for the engine control unit. Consequently, the engine control unit can be designed to accommodate more features than are necessary for a given application to cover a broader market. The flip side of this approach is to design the engine control unit for a limited application reducing the market size. Neither approach creates a cost efficient product for the producer. It either supplies the market with an electronic control unit that has features not being utilized (wasted costs) or a unit that has limited capabilities reducing the economies of scale (higher costs). When these designs are developed using discrete components these inefficiencies are exacerbated.
Technical Paper

Rapid Gasoline Powertrain System Design and Evaluation Using a Powertrain Starter Kit

2005-04-11
2005-01-0062
Prototyping of a complete powertrain controller is not generally permissible due to the large number of subsystems involved and the resources required in making the design a reality. The availability of a complete control system reference design at an early stage in the lifecycle can greatly enhance the quality of the system definition and allows early ideas to be prototyped in the application environment. This paper describes the implementation of such a reference design for a gasoline engine and gearbox management control system, integrated into robust housing which can be used for development in a prototype vehicle. The paper also outlines the powertrain subsystems involved, discusses how the system partitioning is achieved, shows the implementation of the partitioning into the physical hardware, and concludes with presenting the system benefits which can be realized.
Technical Paper

Real-Time 32-Bit Microcontroller with OSEK/VDX Operating System Support

2000-03-06
2000-01-1243
This paper describes the first single-core 32-bit microcontroller-DSP architecture, TriCore, optimized for real-time embedded systems, an OSEK/VDX Real-Time Operating System (RTOS) and an open, integrated development tools platform to allow a development downflow for high-level Computer Aided Software Engineering (CASE) design entry and simulation/validation, rapid prototyping down to the target hardware for calibration and debugging and the up-flow by feeding the data collected from the target Electronic Control Unit (ECU) for system analysis and debugging all the way back to the entry CASE level. Also described are the different features of the new 32-Bit microcontroller-DSP, which speeds up the execution of embedded control applications and simultaneously reduce memory demand.
Technical Paper

Seamless Solutions for LIN

2001-03-05
2001-01-0065
Today's body and convenience applications in general directly control actuators and sensors from a single central electronic control unit (ECU). Future systems will be made of subsystem-clusters communicating via a local Class/A communication bus. This enables modular system design to reduce system complexity. For these types of new distributed applications the LIN bus is currently the most promising communication protocol. To allow a seamless migration from existing centralized to these next generation clustered system developers require software and hardware products for a homogenous and transparent LIN bus communication.
Technical Paper

The Study of Secure CAN Communication for Automotive Applications

2017-03-28
2017-01-1658
Cyber security is becoming increasingly critical in the car industry. Not only the entry points to the external world in the car need to be protected against potential attack, but also the on-board communication in the car require to be protected against attackers who may try to send unauthorized CAN messages. However, the current CAN network was not designed with security in mind. As a result, the extra measures have to be taken to address the key security properties of the secure CAN communication, including data integrity, authenticity, confidentiality and freshness. While integrity and authenticity can be achieved by using a relatively straightforward algorithms such as CMAC (Cipher-based Message Authentication Code) and Confidentiality can be handled by a symmetric encryption algorithm like AES128 (128-bit Advanced Encryption Standard), it has been recognized to be more challenging to achieve the freshness of CAN message.
Technical Paper

Thermal Optimization Process for Small Engine Control Units

2013-10-15
2013-32-9020
The Engine Control Unit (ECU) for small engines is facing challenges with regard to performance, size and cost. In many instances, the customer requirements often contradict each other. Examples include higher performance at lower cost or smaller size, both of which can cause thermal challenges. In order to meet varying performance requirements in a platform approach, the ECU must provide a wide range of functionality. Providing a solution that can meet these flexible requirements will result in an increased component count and larger ECU size. An optimized feature set in the right package can help alleviate these issues. The ECU must be impervious to a wide range of environmental conditions, such as temperature, humidity and vibration. Restricted air flow must also be considered when designing an ECU. Existing approaches often apply the use of large aluminum housings to provide a strong mechanical support with good thermal performance.
X