Refine Your Search

Topic

Author

Search Results

Journal Article

A New Generation Automotive Tool Access Architecture for Remote in-Field Diagnosis

2023-04-11
2023-01-0848
Software complexity of vehicles is constantly growing especially with additional autonomous driving features being introduced. This increases the risk for bugs in the system, when the car is delivered. According to a car manufacturer, more than 90% of availability problems corresponding to Electronic Control Unit (ECU) functionality are either caused by software bugs or they can be resolved by applying software updates to overcome hardware issues. The main concern are sporadic errors which are not caught during the development phase since their trigger condition is too unlikely to occur or is not covered by the tests. For such systems, there is a need of safe and secure infield diagnosis. In this paper we present a tool software architecture with remote access, which facilitates standard read/write access, an efficient channel interface for communication and file I/O, and continuous trace.
Technical Paper

AUDO Architecture A Solution to Automotive Micro-Controller Requirements

2000-03-06
2000-01-0145
The C166 family, based on a 16-bit core; it is nowadays an enormous success in automotive, in particular in PowerTrain. This component is the right answer for the automotive real time applications of today. It is with both, automotive customer requirements and a long automotive experience in semi-conductors that this new generation 32-bit family is borne. The objective of this document is to provide and comment on automotive requirements in terms of the new micro-controller, to show the benefits for the applications and explain how the AUDO architecture fulfils these requirements.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

Architectural Concepts for Fail-Operational Automotive Systems

2016-04-05
2016-01-0131
The trend towards even more sophisticated driver assistance systems and growing automation of driving sets new requirements for the robustness and availability of the involved automotive systems. In case of an error, today it is still sufficient that safety related systems just fail safe or silent to prevent safety related influence of the driving stability resulting in a functional deactivation. But the reliance on passive mechanical fallbacks in which the human driver taking over control, being inevitable in such a scenario, is expected to get more and more insufficient along with a rising degree of driving automation as the driver will be given longer reaction time. The advantage of highly or even fully automated driving is that the driver can focus on other tasks than controlling the car and monitoring it’s behavior and environment.
Technical Paper

Automotive ADAS Camera System Configuration Using Multi-Core Microcontroller

2015-03-10
2015-01-0023
It has become an important trend to implement safety-related requirements in the road vehicles. Recent studies have shown that accidents, which occurred when drivers are not focused due to fatigue or distractions, can be predicted in advance when using safety features. Advanced Driver Assistance Systems (ADAS) are used to prevent this kind of situation. Currently, many major tiers are using a DSP chip for ADAS applications. This paper suggests the migration from a DSP configuration to a Microcontroller configuration for ADAS application, for example, using a 32bit Multi-core Microcontroller. In this paper, the following topics will be discussed. Firstly, this paper proposes and describes the system block diagram for ADAS configuration followed by the requirements of the ADAS system. Secondly, the paper discusses the current solutions using a DSP. Thirdly, the paper presents a system that is migrated to a Multi-core microcontroller.
Technical Paper

Automotive Sensors & Sensor Interfaces

2004-03-08
2004-01-0210
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems push the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration pass to evolution and even revolution of automotive Sensors and Sensor interfaces. The document will explore different architectures and partitioning. Sensor technologies such as magnetic field sensors based on the hall effect as well as bulk and surface silicon micro machined sensors will be mapped to automotive applications by examples. Functions such as self-test, self-calibration and self-repair will be developed.
Technical Paper

Challenges with the Introduction of X-By-Wire Technologies to Passenger Vehicles and Light Trucks in regards to Functional Safety, Cybersecurity and Availability

2023-04-11
2023-01-0581
Classic vehicle production had limitations in bringing the driving commands to the actuators for vehicle motion (engine, steering and braking). Steering columns, hydraulic tubes or steel cables needed to be placed between the driver and actuator. Change began with the introduction of e-gas systems. Mechanical cables were replaced by thin, electric signal wires. The technical solutions and legal standardizations for addressing the steering and braking systems, were not defined at this time. Today, OEMs are starting E/E-Architecture transformations for manifold reasons and now have the chance to remove the long hydraulic tubes for braking and the solid metal columns used for steering. X-by-wire is the way forward and allows for higher Autonomous Driving (AD) levels for automated driving vehicles. This offers new opportunities to design the vehicle in-cabin space. This paper will start with the introduction of x-by-wire technologies.
Technical Paper

Cost Efficient Partitioning for New Generation of Automatic Transmission Gearbox Controllers

2006-04-03
2006-01-0403
This paper shall present advancements in electronic transmission control circuits addressing new challenges in the gearbox striving for improved vehicle efficiency and comfort of driving. Efficient chipset design, requires finding the optimal partitioning, that is the mapping of functionality to hardware or software and analog or digital circuit technology. The efficiency will be judged by minimal cost whilst achieving improved functionality and required scalability for a platform approach. Specific examples demonstrated are smart sensor architecture and new mapping of control strategies, realized with a novice integrated current control IC concept. Comparisons on system level are used to evaluate different function mappings as well as component partitioning. Details of the most optimized mapping and partitioning will be elaborated and first results of implementation in silicon components will be shown.
Technical Paper

Diagnostic and Control Systems for Automotive Power Electronics

2001-03-05
2001-01-0075
The recent improvements in automotive electronics have had a tremendous impact on safety, comfort and emissions. But the continuous increase of the volume of electronic equipment in cars (representing more than 25% of purchasing volume) as well as the increasing system complexity represent a new challenge to quality, post-sales customer support and maintenance. Identifying a fault in a complex network of ECUs, where the different functions are getting more and more intricate, is not an easy task. It can be shown that with the levels of reliability common in 1980, an upper-range automobile of today could never function fault-free. On-Board-Diagnostics (OBD) concepts are emerging to assist the maintenance personnel in localizing the source of a problem with high accuracy, reducing the vehicle repair time, repair costs and costs of warranty claims.
Technical Paper

Digital Knock Signal Conditioning using Fast ADC and DSP

2004-03-08
2004-01-0517
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems is pushing the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. The former analogue filter design is now replaced by digital signal processing. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration route to evolve and even revolutionize automotive electronics. To illustrate this migration toward digital processing the knock function has been developed. A simple RC filter is used as external anti-aliasing. To get the maximum flexibility the signal is very early converted and processed digitally. The micro-controller has been developed using a three-layered solution.
Technical Paper

Driving Small Motors at 42V PowerNet

2001-03-05
2001-01-0726
The following article discusses various proposed solutions, for driving small motors from the existent 12V or 24V supply voltage system at the 42V PowerNet by using dc-dc converters or pulse width modulation (PWM) for voltage- and power- matching with respect to the EMI behaviour.
Technical Paper

Effective System Development Partitioning

2001-03-05
2001-01-1221
In terms of modern technical systems, the automotive sector is characterized by escalating complexity and functionality requirements. The development of embedded control systems has to meet highest demands regarding process-, time- and cost-optimization. Hence, the efficiency of software development becomes a crucial competitive advantage. Systems design engineers need effective tools and methods to achieve exemplary speed and productivity within the development phase. To obtain such tools and methods, semiconductor manufacturers and tool manufacturers must work closely together. Within the joint efforts of ETAS and Infineon, the software tool suite ASCET-SD was enhanced to generate efficient C code for Infineon's TriCore architecture mapped on ETAS's real-time operating system ERCOSEK. The processor interface to application & calibration tools was realized using the ETK probe based on a JTAG/Nexus link at very high bandwidth.
Technical Paper

Efficient Virtualization for Functional Integration on Modern Microcontrollers in Safety-Relevant Domains

2014-04-01
2014-01-0206
The infrastructure in modern cars is a heterogeneous and historically grown network of different field buses coupling different electronic control units (ECUs) from different sources. In the past years, the amount of ECUs in the network has rapidly grown due to the mushrooming of new functions which historically were mostly implemented on a one-ECU-per-function basis resulting in up to a hundred ECUs in fully equipped luxury cars. Additionally, new functions like parking assist systems or advanced chassis control functions are getting increasingly complex and require more computing power. These two facts add up to a complex challenge in development. The current trend to host several functions in single ECUs as integration platforms is one attempt to address this challenge. This trend is supported by the increased computing power of current and upcoming multi-core microcontrollers.
Technical Paper

Embedded System Tool to Support Debugging, Calibration, Fast Prototyping and Emulation

2004-03-08
2004-01-0304
Infineon's latest high-end automotive microcontrollers like TC1796 are complex Systems On Chip (SoC) with two processor cores and up to two internal multi-master buses. The complex interaction between cores, peripherals and environment provides a big challenge for debugging. For mission critical control like engine management the debugging approach must not be intrusive. The provided solution are dedicated Emulation Devices which are able to deal with several 10 Gbit/s of raw internal trace data with nearly no cost adder for mass production and system design. Calibration, which is used later in the development cycle, has different requirements, but is covered by the Emulation Devices as well. The architecture of TC1796ED comprises the unchanged TC1796 silicon layout, extended by a full In-Circuit Emulator (ICE) and calibration overlay memory on the same die. In most cases, the only debug/calibration tool hardware needed is a USB cable.
Technical Paper

Enhanced Injector Dead Time Compensation by Current Feedback

2016-04-05
2016-01-0088
The constant motivation for lower fuel consumption and emission levels has always been in the minds of most auto makers. Therefore, it is important to have precise control of the fuel being delivered into the engine. Gasoline Port fuel injection has been a matured system for many years and cars sold in emerging markets still favor such system due to its less system complexity and cost. This paper will explain injection control strategy of today during development, and especially the injector dead-time compensation strategy in detail and how further improvements could still be made. The injector current profile behavior will be discussed, and with the use of minimum hardware electronics, this paper will show the way for a new compensation strategy to be adopted.
Technical Paper

Feasibility Study for a Secure and Seamless Integration of Over the Air Software Update Capability in an Advanced Board Net Architecture

2016-04-05
2016-01-0056
Vehicle manufacturers are challenged by rising costs for vehicle recalls. A major part of the costs are caused by software updates. This paper describes a feasibility study on how to implement software update over the air (SOTA) in light vehicles. The differences and special challenges in the automotive environment in comparison to the cellular industry will be explained. Three key requirements focus on the drivers’ acceptance and thus are crucial for the vehicle manufacturers: SOTA must be protected against malicious attacks. SOTA shall interfere as little as possible with the availability of a vehicle. Long update processes with long vehicle downtimes or even complete fails must be avoided. The functional safety of the vehicle during operation may not be limited in any way The study gives options how those objectives can be achieved. It considers the necessary security measures and describes the required adaptations of the board-net architectures both on software and hardware level.
Technical Paper

Future Automotive Embedded Systems Enabled by Efficient Model-Based Software Development

2021-04-06
2021-01-0129
This paper explains why software for efficient model-based development is needed to improve the efficiency of automakers and suppliers when implementing solutions with next generation automotive embedded systems. The resulting synergies are an important contribution for the automotive industry to develop safer, smarter, and more eco-friendly cars. To achieve this, it requires implementations of algorithms for machine learning, deep learning and model predictive control within embedded environments. The algorithms’ performance requirements often exceed the capabilities of traditional embedded systems with a homogeneous multicore architecture and, therefore, additional computing resources are introduced. The resulting embedded systems with heterogeneous computing architectures enable a next level of safe and secure real-time performance for innovative use cases in automotive applications such as domain controllers, e-mobility, and advanced driver assistance systems (ADAS).
Technical Paper

Future of Automotive Embedded Hardware Trust Anchors (AEHTA)

2022-03-29
2022-01-0122
The current automotive electronic and electrical (EE) architecture has reached a scalability limit and in order to adapt to the new and upcoming requirements, novel automotive EE architectures are currently being investigated to support: a) an Ethernet backbone, b) consolidation of hardware capabilities leading to a centralized architecture from an existing distributed architecture, c) optimization of wiring to reduce cost, and d) adaptation of service-oriented software architectures. These requirements lead to the development of Zonal EE architectures as a possible solution that require appropriate adaptation of used security mechanisms and the corresponding utilized hardware trust anchors. 1 The current architecture approaches (ECU internal and in-vehicle networking) are being pushed to their limits, simultaneously, the current embedded security solutions also seem to reveal their limitations due to an increase in connectivity.
Technical Paper

Hardware and Software Constraints for Automotive Firewall Systems?

2016-04-05
2016-01-0063
Introduction The introduction of Ethernet and Gigabit Ethernet [2] as the main invehicle network infrastructure is the technical foundation for different new functionalities such as piloted driving, minimizing the CO2- footprint and others. The high data rate of such systems influences also the used microcontrollers due the fact that a big amount of data has to be transferred, encrypted, etc. Figure 1 Motivation - Vehicles will become connected to uncontrolled networks The usage of Ethernet as the in-vehicle-network enables the possibility that future road vehicles are going to be connected with other vehicles and information systems to improve system functionality. These previously closed automotive systems will be opened up for external access (see Figure 1). This can be Car2X connectivity or connection to personal devices. Allowing vehicle systems to communicate with other systems that are not within their physical boundaries impose a previously non-existing security problem.
Technical Paper

Hardware/Software Co-Design of an Automotive Embedded Firewall

2017-03-28
2017-01-1659
The automotive industry experiences a major change as vehicles are gradually becoming a part of the Internet. Security concepts based on the closed-world assumption cannot be deployed anymore due to a constantly changing adversary model. Automotive Ethernet as future in-vehicle network and a new E/E Architecture have different security requirements than Ethernet known from traditional IT and legacy systems. In order to achieve a high level of security, a new multi-layer approach in the vehicle which responds to special automotive requirements has to be introduced. One essential layer of this holistic security concept is to restrict non-authorized access by the deployment of embedded firewalls. This paper addresses the introduction of automotive firewalls into the next-generation domain architecture with a focus on partitioning of its features in hardware and software.
X