Refine Your Search

Topic

Author

Search Results

Journal Article

A New Generation Automotive Tool Access Architecture for Remote in-Field Diagnosis

2023-04-11
2023-01-0848
Software complexity of vehicles is constantly growing especially with additional autonomous driving features being introduced. This increases the risk for bugs in the system, when the car is delivered. According to a car manufacturer, more than 90% of availability problems corresponding to Electronic Control Unit (ECU) functionality are either caused by software bugs or they can be resolved by applying software updates to overcome hardware issues. The main concern are sporadic errors which are not caught during the development phase since their trigger condition is too unlikely to occur or is not covered by the tests. For such systems, there is a need of safe and secure infield diagnosis. In this paper we present a tool software architecture with remote access, which facilitates standard read/write access, an efficient channel interface for communication and file I/O, and continuous trace.
Technical Paper

AUDO Architecture A Solution to Automotive Micro-Controller Requirements

2000-03-06
2000-01-0145
The C166 family, based on a 16-bit core; it is nowadays an enormous success in automotive, in particular in PowerTrain. This component is the right answer for the automotive real time applications of today. It is with both, automotive customer requirements and a long automotive experience in semi-conductors that this new generation 32-bit family is borne. The objective of this document is to provide and comment on automotive requirements in terms of the new micro-controller, to show the benefits for the applications and explain how the AUDO architecture fulfils these requirements.
Technical Paper

Analysis of Field-Stressed Power Inverter Modules from Electrified Vehicles

2015-04-14
2015-01-0421
This paper presents a reliability study of a directly cooled IGBT module after a test drive of 85,000 Km in a fuel cell electric vehicle, as well as of an indirectly cooled IGBT module after a test drive of 200,000km in a hybrid car on public roads. At the end of the test drive, the inverter units were disassembled and analyzed with regard to the lifetime consumption. First, electrical measurements were carried out and the results were compared with the ones obtained directly after module production (End of Line test). After that, ultrasonic microscopy was performed in order to investigate any delamination in the solder layers. As a third step, an optical inspection was performed to monitor damages in the housing, formation of cracks or degradation of wire bonds. The results show none of the depicted failure modes could be found on the tested power modules after the field test. Obviously, no significant life time consumption could be observed.
Technical Paper

Architectural Concepts for Fail-Operational Automotive Systems

2016-04-05
2016-01-0131
The trend towards even more sophisticated driver assistance systems and growing automation of driving sets new requirements for the robustness and availability of the involved automotive systems. In case of an error, today it is still sufficient that safety related systems just fail safe or silent to prevent safety related influence of the driving stability resulting in a functional deactivation. But the reliance on passive mechanical fallbacks in which the human driver taking over control, being inevitable in such a scenario, is expected to get more and more insufficient along with a rising degree of driving automation as the driver will be given longer reaction time. The advantage of highly or even fully automated driving is that the driver can focus on other tasks than controlling the car and monitoring it’s behavior and environment.
Technical Paper

Automotive ADAS Camera System Configuration Using Multi-Core Microcontroller

2015-03-10
2015-01-0023
It has become an important trend to implement safety-related requirements in the road vehicles. Recent studies have shown that accidents, which occurred when drivers are not focused due to fatigue or distractions, can be predicted in advance when using safety features. Advanced Driver Assistance Systems (ADAS) are used to prevent this kind of situation. Currently, many major tiers are using a DSP chip for ADAS applications. This paper suggests the migration from a DSP configuration to a Microcontroller configuration for ADAS application, for example, using a 32bit Multi-core Microcontroller. In this paper, the following topics will be discussed. Firstly, this paper proposes and describes the system block diagram for ADAS configuration followed by the requirements of the ADAS system. Secondly, the paper discusses the current solutions using a DSP. Thirdly, the paper presents a system that is migrated to a Multi-core microcontroller.
Technical Paper

Automotive Sensors & Sensor Interfaces

2004-03-08
2004-01-0210
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems push the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration pass to evolution and even revolution of automotive Sensors and Sensor interfaces. The document will explore different architectures and partitioning. Sensor technologies such as magnetic field sensors based on the hall effect as well as bulk and surface silicon micro machined sensors will be mapped to automotive applications by examples. Functions such as self-test, self-calibration and self-repair will be developed.
Technical Paper

Challenges with the Introduction of X-By-Wire Technologies to Passenger Vehicles and Light Trucks in regards to Functional Safety, Cybersecurity and Availability

2023-04-11
2023-01-0581
Classic vehicle production had limitations in bringing the driving commands to the actuators for vehicle motion (engine, steering and braking). Steering columns, hydraulic tubes or steel cables needed to be placed between the driver and actuator. Change began with the introduction of e-gas systems. Mechanical cables were replaced by thin, electric signal wires. The technical solutions and legal standardizations for addressing the steering and braking systems, were not defined at this time. Today, OEMs are starting E/E-Architecture transformations for manifold reasons and now have the chance to remove the long hydraulic tubes for braking and the solid metal columns used for steering. X-by-wire is the way forward and allows for higher Autonomous Driving (AD) levels for automated driving vehicles. This offers new opportunities to design the vehicle in-cabin space. This paper will start with the introduction of x-by-wire technologies.
Technical Paper

Cost Efficient Integration for Decentralized Automotive ECU

2004-03-08
2004-01-0717
As the demand for enhanced comfort, safety and differentiation with new features continues to grow and as electronics and software enable most of these, the number of electronic units or components within automobiles will continue to increase. This will increase the overall system complexity, specifically with respect to the number of controller actuators such as e-motors. However, hard constraints on cost and on physical boundaries such as maximum power dissipation per unit and pin-count per unit/connector require new solutions to alternative system partitioning. Vehicle manufacturers, as well as system and semiconductor suppliers are striving for increased scalability and modularity to allow for most cost optimal high volume configurations while featuring platform reuse and feature differentiation. This paper presents new semiconductor based approaches with respect to technologies, technology mapping and assembly technologies.
Technical Paper

Cost Efficient Side Airbag Chip Set with Improved Signal Integrity

2007-04-16
2007-01-0396
In the case of a side impact the decision to deploy an airbag has to be taken much faster as it would be required for a front impact. Furthermore, there is a significant spread of the measurable acceleration depending on which pillars of the cars side are hit. Measuring the pressure inside the door as a direct result of an impact, the deformation of the door becomes observable. Based on pressure measurements side impacts can be detected much faster and more reliable. Therefore side airbag pressure sensors are established as add-on or replacement for side airbag acceleration sensors. This paper will present a Side Airbag Chip Set comprising of a side airbag pressure sensor and a satellite receiver. The system architecture and the partitioning between a single chip solution for the side airbag pressure sensor module plus the compatible satellite receiver will be described.
Technical Paper

Cybersecurity in the Context of Fail-Operational Systems

2024-04-09
2024-01-2808
The development of highly automated driving functions (AD) recently rises the demand for so called Fail-Operational systems for native driving functions like steering and braking of vehicles. Fail-Operational systems shall guarantee the availability of driving functions even in presence of failures. This can also mean a degradation of system performance or limiting a system’s remaining operating period. In either case, the goal is independency from a human driver as a permanently situation-aware safety fallback solution to provide a certain level of autonomy. In parallel, the connectivity of modern vehicles is increasing rapidly and especially in vehicles with highly automated functions, there is a high demand for connected functions, Infotainment (web conference, Internet, Shopping) and Entertainment (Streaming, Gaming) to entertain the passengers, who should no longer occupied with driving tasks.
Journal Article

DSI3 Sensor to Master Decoder using Symbol Pattern Recognition

2014-04-01
2014-01-0252
The newly released Distributed System Interface 3 (DSI3) Bus Standard specification defines three modulation levels form which 16 valid symbols are coded. This complex structure is best decoded with symbol pattern recognition. This paper proposes a simplification of the correlation score calculation that sharply reduces the required number of operations. Additionally, the paper describes how the pattern recognition is achieved using correlation scores and a decoding algorithm. The performance of this method is demonstrated by mean of simulations with different load models between the master and the sensors and varying noise injection on the channel. We prove than the pattern recognition can decode symbols without any error for up to 24dBm.
Technical Paper

Design Considerations for Power Electronics in HEV Applications

2007-04-16
2007-01-0277
Today the majority of power electronics is developed based on the requirements set by the main fields of application e.g. power generation, power supply, industrial drive and traction. With introduction to automotive applications new requirements have to be taken into account. This paper discusses how interconnection technologies for power semiconductors can be improved to meet the demand for higher temperature capability in HEV applications.
Technical Paper

Digital Knock Signal Conditioning using Fast ADC and DSP

2004-03-08
2004-01-0517
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems is pushing the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. The former analogue filter design is now replaced by digital signal processing. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration route to evolve and even revolutionize automotive electronics. To illustrate this migration toward digital processing the knock function has been developed. A simple RC filter is used as external anti-aliasing. To get the maximum flexibility the signal is very early converted and processed digitally. The micro-controller has been developed using a three-layered solution.
Technical Paper

Effective System Development Partitioning

2001-03-05
2001-01-1221
In terms of modern technical systems, the automotive sector is characterized by escalating complexity and functionality requirements. The development of embedded control systems has to meet highest demands regarding process-, time- and cost-optimization. Hence, the efficiency of software development becomes a crucial competitive advantage. Systems design engineers need effective tools and methods to achieve exemplary speed and productivity within the development phase. To obtain such tools and methods, semiconductor manufacturers and tool manufacturers must work closely together. Within the joint efforts of ETAS and Infineon, the software tool suite ASCET-SD was enhanced to generate efficient C code for Infineon's TriCore architecture mapped on ETAS's real-time operating system ERCOSEK. The processor interface to application & calibration tools was realized using the ETK probe based on a JTAG/Nexus link at very high bandwidth.
Technical Paper

Embedded System Tool to Support Debugging, Calibration, Fast Prototyping and Emulation

2004-03-08
2004-01-0304
Infineon's latest high-end automotive microcontrollers like TC1796 are complex Systems On Chip (SoC) with two processor cores and up to two internal multi-master buses. The complex interaction between cores, peripherals and environment provides a big challenge for debugging. For mission critical control like engine management the debugging approach must not be intrusive. The provided solution are dedicated Emulation Devices which are able to deal with several 10 Gbit/s of raw internal trace data with nearly no cost adder for mass production and system design. Calibration, which is used later in the development cycle, has different requirements, but is covered by the Emulation Devices as well. The architecture of TC1796ED comprises the unchanged TC1796 silicon layout, extended by a full In-Circuit Emulator (ICE) and calibration overlay memory on the same die. In most cases, the only debug/calibration tool hardware needed is a USB cable.
Technical Paper

From Natural Language to Semi-Formal Notation Requirements for Automotive Safety

2015-04-14
2015-01-0265
The standard ISO 26262 stipulates a “top-down” approach based on the process “V” model, by conducting a hazard analysis and risk assessment to determine the safety goals, and subsequently derives the safety requirements down to the appropriate element level. The specification of safety goals is targeted towards identified hazardous events, whereas the classification of safety requirements does not always turn out non-ambiguous. While requirement formalization turns out to be advantageous, the translation from natural language to semi-formal requirements, especially in context of ISO 26262, poses a problem. In this publication, a new approach for the formalization of safety requirements is introduced, targeting the demands of safety standard ISO 26262. Its part 8, clause 6 (“Specification and management of safety requirements”) has no dedicated work product to accomplish this challenging task.
Technical Paper

Giant Magneto Resistors - Sensor Technology and Automotive Applications

2005-04-11
2005-01-0462
The paper will give an introduction to the principle of the giant magneto resistive - GMR - effect and the silicon system integration of GMR sensors. The two main applications of a GMR as a magnetic field strength sensor and as an angular field direction sensor will be discussed under consideration of automotive requirements. The typical applications of a magnetic field strength GMR sensor in incremental position and speed sensing and those of GMR angular field sensors in position sensing will be summarized. Finally advantages of GMR in those applications will be discussed and conclusions on the use of GMR in automotive sensing will be drawn.
Technical Paper

Hardware and Software Constraints for Automotive Firewall Systems?

2016-04-05
2016-01-0063
Introduction The introduction of Ethernet and Gigabit Ethernet [2] as the main invehicle network infrastructure is the technical foundation for different new functionalities such as piloted driving, minimizing the CO2- footprint and others. The high data rate of such systems influences also the used microcontrollers due the fact that a big amount of data has to be transferred, encrypted, etc. Figure 1 Motivation - Vehicles will become connected to uncontrolled networks The usage of Ethernet as the in-vehicle-network enables the possibility that future road vehicles are going to be connected with other vehicles and information systems to improve system functionality. These previously closed automotive systems will be opened up for external access (see Figure 1). This can be Car2X connectivity or connection to personal devices. Allowing vehicle systems to communicate with other systems that are not within their physical boundaries impose a previously non-existing security problem.
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
Video

High Temperature Power Device and Packaging - The Technology Leap to Achieve Cost, Power Density and Reliability Target

2011-11-07
The three major challenges in the power electronics in hybrid and electric vehicles are: System cost, power density and reliability. High temperature power device and packaging technologies increases the power density and reliability while reducing system cost. Advanced Silicon devices with synthesized high-temperature packaging technologies can achieve junction temperature as high as 200C (compared to the present limitation of 150C) eliminating the need for a low-temperature radiator and therefore these devices reduces the system cost. The silicon area needed for a power inverter with high junction temperature capability can be reduced by more than 50 - 75% thereby significantly reducing the packaging space and power device and package cost. Smaller packaging space is highly desired since multiple vehicle platforms can share the same design and therefore reducing the cost further due to economies of scale.
X