Refine Your Search

Topic

Author

Search Results

Technical Paper

1958 Chevrolet LEVEL AIR SUSPENSION

1958-01-01
580049
CHEVROLET has made its new air-suspension system easily interchangeable in production line assembly with standard full-coil suspension by adopting a 4-link-type rear suspension with short and long arms. A feature of the system is the mounting of the leveling valves within the air-spring assemblies. These valves correct riding height continually at a moderate rate, regardless of whether the springs are leveling or operating in ride motion. The system provides constant frequency ride—ride comfort remains the same whether the car is occupied by the driver alone or is fully loaded.
Technical Paper

A Connectorized Passive Optical Star for Automotive Networking Applications

1994-03-01
940798
This paper introduces for the first time a fully connectorized passive optical star for use with plastic optical fiber that addresses all automotive application requirements. A unique mixing element is presented that offers linear expandability, uniformity of insertion loss, and packaging flexibility. The star is constructed of all plastic molded components to make it low cost and produceable in high volume and is single-ended to facilitate vehicle integration. The star is connectorized to facilitate assembly into the vehicle power and signal distribution system.
Technical Paper

A Five-Speed Starting Clutch Automatic Transmission Vehicle

2003-03-03
2003-01-0248
A wet multi-plate clutch, designated as the “starting clutch”, is used to replace the torque converter in the automatic transmission in order to improve vehicle fuel economy. The transmission ratio spread must be increased to compensate for the torque multiplication of the torque converter and avoid penalizing the 0-60 mph acceleration performance. The main challenge of this concept is the control of the starting clutch to ensure acceptable vehicle drivability. This paper describes the system of a five-speed starting clutch automatic transmission vehicle and shows vehicle test results. Vehicle test data show that (i) the fuel economy benefit of the starting clutch is significant, and (ii) a starting clutch transmission can be designed to equal or better the 0-60 mph acceleration performance of a torque converter transmission by proper selection of the gear ratios.
Technical Paper

A Parametric Approach for Rapid Design and Analysis of Automotive HVAC Defrost Systems

2001-03-05
2001-01-0584
The overall vision of this project was to develop a new technology that will be an enabler to reduce design and development time of HVAC systems by an order of magnitude. The objective initially was to develop a parametric model of an automotive HVAC Windshield Defrost Duct coupled to a passenger compartment. It can be used early on in the design cycle for conducting coarse packaging studies by quickly exploring “what-if” design alternatives. In addition to the packaging studies, performance of these design scenarios can be quickly studied by undertaking CFD simulation and analyzing flow distribution and windshield melting patterns. The validated geometry and CFD models can also be used as knowledge building tools to create knowledge data warehouses or repositories for precious lessons learned.
Technical Paper

A Plan for Progress: The SAE Strategic Plan and Strategic Planning Process

1990-04-01
900930
While long-range planning is important to any organization, because of the constant turnover of volunteer leaders, a long-range strategic plan is crucial for maintaining continuity in a non-profit organization. SAE's strategic planning process resulted in a plan, evaluated and revised annually, which outlines the purpose, missions, and goals of the Society and describes action plans and steps necessary to achieve those goals. SAE's exceptional growth in all areas during the last ten years-for example, membership has grown from 37,000 in 1980 to 58,000 today-is evidence of the success of the process and the plan.
Technical Paper

A Predictive Process for Spring Failure Rates in Automotive Parts Applications

1991-02-01
910356
This paper discusses an analytical technique for computing the failure rate of steel springs used in automotive part applications. Preliminary computations may be performed and used to predict spring failure rates quickly at a very early stage of a product development cycle and to establish program reliability impact before commitment. The analytical method is essentially a combination of various existing procedures that are logically sequenced to compute a spring probability of failure under various operational conditions. Fatigue life of a mechanical component can be computed from its S-N curve. For steels, the S-N curve can be approximated by formulae which describe the fatigue life as a function of its endurance limit and its alternating stress. Most springs in service are preloaded and the actual stress fluctuates about a mean level. In order to compute an equivalent alternating stress with zero mean, an analytical method based on the Goodman Diagram is used.
Technical Paper

A Requirements Driven Design Methodology for a Vehicle Brake System

1993-03-01
930800
Defining or sizing the basic components in a vehicle brake system is done to satisfy specific requirements such as vehicle stopping distance, pedal travel and effort; braking efficiency as well as thermal considerations, cost, and packaging. This paper presents a flow-down method for computing brake system design parameters directly from those requirements. Relationships are also developed that enable the designer to understand trade-offs between requirements and system parameters.
Technical Paper

AUTOIGNITION associated with HOT STARTING

1958-01-01
580020
USING a high-speed motion picture camera, flame photographs were taken of the combustion process associated with the starting of hot gasoline engines. Compression ignition at isolated points followed by normal combustion caused peak cylinder pressures to occur prior to top dead-center under some low-speed engine conditions. In addition, an abnormal combustion phenomenon was observed in the last part of the charge to burn. The reaction rate was appreciably faster than normal for the engine speed and much slower than is usually observed in knocking combustion at normal engine speeds.
Technical Paper

AUTOMATIC TRANSMISSION CONTROL SYSTEMS

1947-01-01
470242
THIS description of the hydraulic control used with the hydra-matic transmission reveals how the control operates to change ratios under power without direction from the driver. The control's pattern of automatic shifting for ordinary, high-range driving has been selected as the best compromise between top performance and low ratio of engine noise to wind noise. The control's low range shifts gears according to performance dictates alone, furnishing greater power for extreme conditions at low speeds and enabling the driver to use his engine as a brake on steep descents. Heart of the control system is a double hydraulic governor, sensitive both to car speed and throttle opening. THIS paper, as well as the two that follow, one by Messrs. Nutt and Smirl and the other by Mr. Kimberly, make up a symposium on automatic transmission components presented at the 1947 SAE Summer Meeting.
Technical Paper

Absolute Stability of Automotive Idle Speed Control Systems

1996-02-01
960620
This paper describes an absolute stability analysis of idle speed control systems. Current idle speed control systems make use of both spark advance and the idle air actuator to control engine speed for improved response relative to variations in the target idle speed due to load disturbances. The control system at idle can be presented by a multiple input multiple output (MIMO) model [1]. Control system design is usually done based on linear or linearized models [2,3,4]. However idle speed control systems are nonlinear because of the saturation of the actuators. This paper describes an application of the absolute stability theory to idle speed control systems with saturation of actuators.
Technical Paper

Adaptive Hydraulic Braking Traction Control for the 2003 Chevrolet Kodiak and GMC TopKick

2002-11-18
2002-01-3116
The development and application of a traction control Kodiak and GMC TopKick are explained. Most traction systems use engine management to enable traction control, while the adaptive braking system can provide traction assist for either gas or Diesel powered vehicles from 14,000 lbs. to 33,000 lbs. GVW. The performance driven criteria that established the design requirements and the development of a new product to meet these objectives are discussed. Both the vehicle manufacturer and the traction controller supplier provided these criteria. The basic ABS and traction control hydraulic schematics will be described as they apply to the vehicles. The results of the development program will be compared to the criteria used to establish the goals, and the benefits of the traction control system will be discussed.
Technical Paper

Alliance Principle 1.4: Visual Downangle Criteria for Navigation and Telematics Displays in Vehicles

2005-04-11
2005-01-0425
The Alliance of Automotive Manufacturers (Alliance) has produced a document in which Principle 1.4 gives criteria and methods for calculating downvision angles to navigation and telematics displays in vehicles. This paper describes the details of the criteria and methods for determining compliance. Visual displays placed high in the vehicle instrument panel help drivers to use their peripheral vision to monitor the roadway for major developments, even during brief glances to the display. The Alliance has developed two criteria to define the maximum allowable downward viewing angle for displayed information in North American vehicles. One criterion is for use in two-dimensional Computer Aided Design (CAD) analyses, and one is for use in three-dimensional CAD analyses. Alliance Principle 1.4 is consistent with known driver performance research data, and known facts about the peripheral sensitivity of the human visual system.
Technical Paper

An Automotive Electronic Climate Control Heating and Air Conditioning System

1980-06-01
800792
The Cadillac Electronic Climate Control heating and air conditioning system provides automatic control of the passenger compartment temperature. It utilizes a microcomputer to control the operation of electrical, mechanical and vacuum components that regulate the amount and temperature of air delivered into the car to maintain the “customer set” comfort level. The first step in the evolution of this new system was to define the performance requirements. With this established, the system was then designed, tested and developed in the laboratory and on the road until this desired performance was achieved.
Technical Paper

An Economic and Environmental Life Cycle Evaluation of 100% Regrind ABS for Automotive Parts

1998-11-30
982196
The use of regrind acrylonitrile-butadiene-styrene (ABS) for automotive parts and components results in two types of financial savings. The first is the shared monetary savings between General Motors and the molder for the difference in the virgin resin price versus price of the ABS regrind. The second is a societal energy savings seen in the life cycle of virgin ABS versus reground ABS. An added benefit is the preservation of natural resources used to produce virgin ABS.
Technical Paper

An Evaluation of Alternative Methods for Assessing Driver Workload in the Early Development of In-Vehicle Information Systems

2002-05-13
2002-01-1981
This study examined whether the effect of subsidiary tasks on driving performance can be predicted from stationary (static) testing. Alternative methods for assessing the performance of drivers during their use of in-vehicle information systems were examined. These methods included static testing in stationary vehicles, as well as dynamic, on-road testing. The measures that were obtained from static tests were evaluated in terms of how well they could predict measures obtained from driving performance during on-road testing (which included concurrent use of secondary information systems). The results indicated that measures obtained in static test settings were highly correlated with corresponding measures obtained from on-road performance testing.
Technical Paper

Anthropometry of Indy Car Drivers

1994-12-01
942547
This study assembled a database of anatomic dimensions of Indy Car drivers and developed procedures that can be used as models for future compilations of anatomic data from specialized populations. The database defines the body configuration for the Indy Car driver population and indicates that the current HYBRID III, midsize male crash dummy will provide a reasonable approximation of that population if used in investigations involving issues of crash protection. This study took advantage of a unique opportunity to assemble an anthropometric database from a specialized population which was compared to an existing database collected from a comparable sub-set of the United States population.
Technical Paper

Applications of Monte Carlo Simulation to Vehicle Maintenance and Component Remanufacturing Decisions

1983-02-01
830550
As component and systems sophistication in both cars and trucks increase, improved diagnostic capabilities are required to assure proper and expedient serviceability. Replacement of electrical modules, starter motors, carburetors, fuel injectors and even whole engines or transmissions is encouraged by high labor costs and continued vehicle mobility mandates. The remanufacturing business has grown and components previously discarded now provide valuable core elements to feed the industry. To achieve efficient utilization of capital, equipment and labor, remanufacturers must estimate when this supply of core elements will be available and plan their production schedules accordingly. In order to properly service private individuals and commercial fleets, minimize vehicle downtime and reduce life cycle costs, adaptation of available analytical tools must be made.
Technical Paper

Architecture Analysis of Safety Critical Systems Using Parametric Expressions to Calculate System Behavior

2006-04-03
2006-01-1057
Architecture exploration could benefit from some early results of a safety analysis process. Typically, classical system safety analysis techniques such as Fault tree analysis (FTA) are performed after the design is completed. We propose an approach for an early safety assessment to improve the design and also shorten the design cycle time. A quick assessment to determine the safety figure of merit of the intended architecture expressed as a parametric expression can be used to determine the overall acceptability of the architecture. The result from a quick assessment of the system safety could be used as a means to explore system trade-offs in reliability and redundancy at the highest design levels.
Technical Paper

Architecture of By-Wire Systems Design Elements and Comparative Methodology

2003-03-03
2003-01-1291
By-wire systems have the potential of augmenting the normal capabilities of human drivers as well as serving as enablers for emerging safety technologies. To achieve these features, these systems must be carefully designed, analyzed, and verified for safety because they are new, complex, and potentially exhibit new and different failure modes and effects. Duplication may be required to ensure that safety margins are met in the presence of faults. Full duplication of every system may not lead to a cost effective implementation, especially if multiple independent by-wire systems are placed on a single vehicle. Other architectural approaches for the integration of by-wire systems need to be considered and analyzed. These architectures should meet if not exceed the safety requirements while providing a more cost effective implementation than a fully duplicated architecture.
Technical Paper

Assessing Required Levels of Redundancy for Composite Safety/Mission Critical Systems

2004-03-08
2004-01-1664
We investigate and analyze the concept of “shared redundancy” and its application to the design of architectures that integrate multiple safety/mission critical functions or subsystems. The analysis is based on considering different design alternatives with varying levels of physical redundancy of the components constituting the functions or subsystems. Under a set of assumptions, we show that the overall system reliability and availability in a shared redundancy based architecture can be improved without increasing the levels of physical redundancy for the components employed at the subsystem level. However, such an improvement will be limited by the component(s) with the minimal level of redundancy.
X