Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Novel Heating-Coating Hybrid Strategy for Wind Turbine Icing Mitigation

2019-06-10
2019-01-2029
The electro-thermal method is most commonly used for wind turbine anti-/de-icing. The upmost drawback of such systems is the high power consumption. In the present study, we proposed to use a durable slippery liquid-infused porous surface (SLIPS) to effectively reduce the power requirement of the heating element during the anti-/de-icing process. The explorative study was conducted in the Icing Research Tunnel at Iowa State University (ISU-IRT) with a DU91-W2-250 wind turbine blade model exposed under severe icing conditions. During the experiments, while a high-speed imaging system was used to record the dynamic ice accretion process, an infrared (IR) thermal imaging system was also utilized to achieve the simultaneous surface temperature measurements over the test model.
Technical Paper

A Parametric Study on the Thermodynamic Characteristics of DBD Plasma Actuation and Its Potential for Wind Turbine Icing Mitigation

2019-06-10
2019-01-2031
Wind turbine icing represents the most significant threat to the integrity of wind turbines in cold weather. Ice formation on wind turbine blades was found to cause significant aerodynamic performance degradation, resulting in a substantial drop in energy production. Recently developed Dielectric barrier discharge (DBD) plasma-based anti-/de-icing systems showed very promising effects for aircraft icing mitigation. In this present study, DBD plasma-based anti-/de-icing systems were employed for wind turbine icing mitigation. First, a comprehensive parametric study is conducted to investigate the effects of various DBD plasma actuation parameters on its thermodynamic characteristics. An infrared (IR) thermal imaging system is used to quantitatively measure the temperature distributions over the test plate under various test conditions.
Technical Paper

An Experimental Investigation of a Wind-Driven Water Droplet over the Slippery Liquid Infused Porous Surface

2019-06-10
2019-01-1951
The promising anti-icing performance of the slippery liquid infused porous surface (SLIPS) has been recently demonstrated for various engineering applications. The runback icing for aircraft and wind turbines could be effectively mitigated considering the timely removal of water droplet by the wind shearing force due to the low adhesion on the SLIPS. In this study, the flow field both inside and around the wind-driven droplet over the SLIPS was experimentally investigated by using Particle Image Velocimetry (PIV) technique. Previous studies majorly focus on the internal flow pattern before the droplet incipient motion. In this study, the flow field inside a moving droplet was firstly investigated. As a result of the low surface adhesion of the SLIPS, droplet oscillations were eliminated and the droplet internal flow field could be corrected from the optical distortion.
Technical Paper

Assessing Grid Impact of Battery Electric Vehicle Charging Demand Using GPS-Based Longitudinal Travel Survey Data

2014-04-01
2014-01-0343
This paper utilizes GPS tracked multiday travel activities to estimate the temporal distribution of electricity loads and assess battery electric vehicle (BEV) grid impacts at a significant market penetration level. The BEV load and non-PEV load vary by time of the day and day of the week. We consider two charging preferences: home priority assumes BEV drivers prefer charging at home and would not charge at public charging stations unless the state of charge (SOC) of the battery is not sufficient to cover the way back to home; and charging priority does not require drivers to defer charging to home and assumes drivers will utilize the first available charging opportunity. Both home and charging priority scenarios show an evening peak demand. Charging priority scenario also shows a morning peak on weekdays, possibly due to workplace charging.
Technical Paper

Fuel Effects on the Knocking Limit of a Heavy-Duty Natural Gas Engine

1998-05-04
981401
This paper reports on an experimental study conducted to determine the effect on the knock limited operating map of a natural gas engine when propane is added to the fuel. The map involves engine parameters such as BMEP, spark timing, equivalence ratio, and propane fraction. The map shows that to maintain its design BMEP, the maximum and minimum equivalence ratios that the engine can operate with natural gas are 0.78 at a timing of 25 degrees BTDC and 0.73 at 20 degrees BTDC, respectively. However, when the propane percentage of the fuel is increased to 15% of the fuel by mass, the maximum and minimum equivalence ratios that the engine can operate are 0.75 and 0.70, respectively, which corresponds to spark timings of 22 and 20 degrees BTDC. The map demonstrates that knock is not a major constraint for typical natural gas. Spark timing retard is limited by the exhaust gas temperature and minimum equivalence ratio is limited by the BMEP requirement of the engine.
Technical Paper

Predicting Effects of DME on the Operating Range of Natural Gas-Fueled Compression Ignition Engines

2007-04-16
2007-01-0620
Numerical models were used to study the effects of dimethyl ether (DME) on the operation of a compression-ignition engine fueled with premixed natural gas. The models used multi-dimensional engine CFD coupled with detailed chemical kinetics. Combustion characteristics of various compositions of the natural gas and DME mixture were simulated. Results showed that combustion phasing, nitrogen oxides emissions, and effects of fuel compositions on engine operating limits were well predicted. Chemical kinetics analysis indicated that ignition was achieved by DME oxidation, which, in turn, induced natural gas combustion. It was found that low temperature heat release became more significant as DME concentration increased. For an appropriate amount of DME in the mixture, the stable engine operating range became narrower as natural gas concentration increased. The model also captured the low temperature combustion features of the present engine with low nitrogen oxides emissions.
Technical Paper

Quantification of 3D Ice Structures Accreted on a Wind Turbine Airfoil Model

2019-06-10
2019-01-2030
Accurate quantification of 3D shapes of the complex ice structures accreted on wind turbine blades is highly desirable to develop ice prediction models for more accurate prediction of the aerodynamic performance degradation and power reduction due to the ice accretion on wind turbine blades. In the present study, an experimental investigation was conducted to quantitatively characterize the 3D shapes of the ice structures accreted over a DU91-W2-250 wind turbine airfoil model in the Icing Research Tunnel available at Iowa State University (ISU-IRT). A glaze icing condition and a rime icing condition that wind turbines usually experience in winter were duplicated by using ISU-IRT. A high-resolution non-intrusive 3D scanning system was used to make detailed 3D-shape measurements to quantify the complicated ice structures accreted on the wind turbine airfoil model as a function of the ice accretion time.
Technical Paper

The Cost of Moving Overburden By Various Machine Systems

1975-02-01
750578
An overview of the Iowa State Coal Project is presented. Draglines and scrapers are compared for energy efficiency in stripping coal. Survey results on scrapers are presented which show diverse production and cost relationships indicating that many factors other than size of machine, haul distance, and grade are important.
X