Refine Your Search

Topic

Author

Search Results

Technical Paper

1D Modeling of Alternative Fuels Spray in a Compression Ignition Engine Using Injection Rate Shaping Strategy

2019-09-09
2019-24-0132
The Injection Rate Shaping consists in a novel injection strategy to control air-fuel mixing quality via a suitable variation of injection timing that affects the injection rate profile. This strategy has already provided to be useful to increase combustion efficiency and reduce pollutant emissions in the modern compression ignition engines fed with fossil Diesel fuel. But nowadays, the ever more rigorous emission targets are enhancing a search for alternative fuels and/or new blends to replace conventional ones, leading, in turn, a change in the air-fuel mixture formation. In this work, a 1D model of spray injection aims to investigate the combined effects of both Injection Rate Shaping and alternative fuels on the air-fuel mixture formation in a compression ignition engine. In a first step, a ready-made model for conventional injection strategies has been set up for the Injection Rate Shaping.
Technical Paper

A Comparative Analysis of Combustion Process in D.I. Diesel Engine Fueled with Biodiesel and Diesel Fuel

2000-03-06
2000-01-0691
The 1997 Kyoto International Conference Protocol committed industrialized countries to reduce their global emissions of greenhouse gases within the period 2008 2012 by at least 5% with respect to 1990. In view of this and following the European Community directives, the Italian government approved a three-year pilot project to promote the experimental employment of biodiesel. The methyl esters of vegetable oils, known as biodiesel are receiving increasing interest because of their low environmental impact and their potential as an alternative fuel for diesel engines as they would not require any significant modification of existing engines. Consequently, an experimental research program has been developed to evaluate performance and emissions of a Diesel engine fueled with a methyl ester derived from rape seed (Rapeseed Methyl Ester or RME) by changing the composition of the diesel fuel-RME mixture. This program aims to analyze the performance and emissions of a turbocharged D.I.
Journal Article

Alternative Diesel Fuels Characterization in Non-Evaporating and Evaporating Conditions for Diesel Engines

2010-05-05
2010-01-1516
This paper reports the study of the effects of alternative diesel fuel and the impact for the air-fuel mixture preparation. The injection process characterization has been carried out in a non-evaporative high-density environment in order to measure the fuel injection rate and the spatial and temporal distribution of the fuel. The injection and vaporization processes have been characterized in an optically accessible single cylinder Common Rail diesel engine representing evaporative conditions similar to the real engine. The tests have been performed by means of a Bosch second generation common rail solenoid-driven fuel injection system with a 7-holes nozzle, flow number 440 cc/30s @100bar, 148deg cone opening angle (minisac type). Double injection strategy (pilot+main) has been implemented on the ECUs corresponding to operative running conditions of the commercial EURO 5 diesel engine.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro5 Automotive Diesel Engine

2010-04-12
2010-01-0472
The present paper describes some results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of FAME and GTL fuel blends on the performance, emissions and fuel consumption of the latest-generation automotive diesel engines. The investigation was carried out on the newly released GM 2.0L 4-cylinder “torque-controlled” Euro 5 diesel engine for PC application and followed previous tests on its Euro 4 version, in order to track the interaction between the alternative fuels and the diesel engine, as the technology evolves. Various blends of first generation biodiesels (RME, SME) and GTL with a reference diesel fuel were tested, notably B20, B50 and B100. The tests were done in a wide range of engine operation points for the complete characterization of the biodiesels performance in the NEDC cycle, as well as in full load conditions.
Technical Paper

An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine

2016-04-05
2016-01-0738
UV-visible digital imaging and 2D chemiluminescence were applied on a single cylinder optically accessible compression ignition engine to investigate the effect of different alcohol/diesel fuel blends on the combustion mechanism. The growing request for greenhouse gas emission reduction imposes to consider the use of alternative fuels with the aim of both partially replacing the diesel fuel and reducing the fossil fuel consumption. To this purpose, the use of ABE (Acetone-Butanol-Ethanol) fermentation could represent an effective solution. Even if the different properties of alcohols compared to Diesel fuel limit the maximum blend concentration, low blend volume fractions can be used for improving combustion efficiency and exhaust emissions. The main objective of this study was to investigate the effects of the different fuel properties on the combustion evolution within the combustion chamber of a prototype optically accessible compression ignition engine.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Analysis of Dual Fuel Combustion in Single Cylinder Research Engine Fueled with Methane and Diesel by IR Diagnostics

2019-04-02
2019-01-1165
In the present study, dual fuel mode is investigated in a single cylinder optical compression ignition (CI) research engine. Methane is injected in the intake manifold while the diesel is delivered via the standard injector directly into the engine. The aim is to study by non-intrusive diagnostics the effect of increasing methane concentration at constant injected diesel amount during the combustion evolution from start of combustion. IR imaging is applied in cycle resolved mode. Three filters are adopted to detect from injection to combustion phase with high spatial and temporal resolution: OD1.45 (3-5.5 μm), band pass 3.3 μm (hydrocarbons) and band pass 4.2 μm (CO2). Using the band pass IR imaging qualitative information about fuel-vapor distribution and ignition locations during low and high temperature combustion have been provided.
Journal Article

Analysis of Nozzle Coking Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2013-09-08
2013-24-0127
The present paper reassumes the results of an experimental study focused on the effects of the nozzle injector's coking varying the flow number (FN); the performance and emissions of an automotive Euro5 diesel engine have been analyzed using diesel fuel. As the improvement of the diesel engine performance requires a continuous development of the injection system and in particular of the nozzle design, in the last years the general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle holes size. The study carried out moves from the consideration that a reduction of the nozzle holes diameter could increase the impact of their coking process. For this purpose, an experimental campaign has been realized, testing the engine in steady state in three partial load operating points, representative of the European homologation driving cycle, and in full load conditions.
Technical Paper

Analysis of the Cooling Plant of a High Performance Motorbike Engine

2012-04-16
2012-01-0354
This paper is based on a Research Project of the Department of Mechanical Engineering (DiME) in collaboration with Aprilia, the Italian motorbike manufacturer. In an attempt to simulate the functioning of the cooling plant of the Aprilia RSV-4 motorbike a numerical model was constructed using mono-dimensional and three-dimensional simulation codes. Our ultimate aim was to create a simulation model which could be of assistance to engine designers to improve cooling plant performance, thereby reducing research and development costs. The model allows to simulate the running conditions of the whole cooling circuit upon variations in environmental and running conditions. In particular, the centrifugal pump of the cooling plant was simulated by a 3D commercial software, while the whole circuit was built by a 1D commercial code which allows simulation of all the thermal exchanges and pressure drops in the cooling circuit.
Technical Paper

Application of a Dual Fuel Diesel-CNG Configuration in a Euro 5 Automotive Diesel Engine

2017-03-28
2017-01-0769
An increasing interest in the use of natural gas in CI engines is currently taking place, due to several reasons: it is cheaper than conventional Diesel fuel, permits a significant reduction of carbon dioxide and is intrinsically clean, being much less prone to soot formation. In this respect, the Dual Fuel concept has already proven to be a viable solution, industrially implemented for several applications in the heavy duty engines category. An experimental research activity was devoted to the analysis of the potentiality offered by the application of a Dual Fuel Diesel-CNG configuration on a light duty 2L Euro 5 automotive diesel engine, equipped with an advanced control system of the combustion. The experimental campaign foresaw to test the engine in dynamic and steady state conditions, comparing engine performance and emissions in conventional Diesel and Dual Fuel combustion modes.
Technical Paper

Assessment of Closed-Loop Combustion Control Capability for Biodiesel Blending Detection and Combustion Impact Mitigation for an Euro5 Automotive Diesel Engine

2011-04-12
2011-01-1193
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized Rapeseed Methyl Ester (RME) at different levels of blending on performance, emissions and fuel consumption of modern automotive diesel engines featuring Closed-Loop Combustion Control (CLCC). In parallel, the capability of this system to detect the level of biodiesel blending through the use of specific detection algorithms was assessed. The tests were performed on the recently released 2.0L Euro5 GM diesel engine for passenger car application equipped with embedded pressure sensors in the glow plugs. Various blends of fresh and aged RME with reference diesel fuel were tested, notably 20% RME by volume (B20), 50% (B50) and pure RME (B100).
Technical Paper

Assessment of Engine Control Parameters Effect to Minimize GHG Emissions in a Dual Fuel NG/Diesel Light Duty Engine

2018-04-03
2018-01-0266
The interest in Natural Gas (NG) as alternative fuel for transportation is constantly growing, mostly due to its large availability and lower environmental impact with respect to gasoline or diesel fuel. In this scenario, the application of the Dual Fuel (DF) Diesel- Natural Gas (NG) combustion concept to light duty engines can represent an important route to increment the diffusion of natural gas use. Many studies have proven the benefits of DF with respect to conventional diesel combustion in terms of CO2, NOx, PM and PN emissions, with the main drawback of high unburned hydrocarbon, mainly at low/partial engine loads. This last aspect still prevents the application of DF mode to small displacement engines. In the present work, a 2.0 L Euro 5 compliant diesel engine, equipped with an advanced electronic closed-loop combustion control (CLCC) system, has been set up to operate in DF mode and tested on a dyno test bench.
Technical Paper

Assessment of the Effect of Low Cetane Number Fuels on a Light Duty CI Engine: Preliminary Experimental Characterization in PCCI Operating Condition

2011-09-11
2011-24-0053
The goal of this paper is to acquire insight into the influence of cetane number (CN) and fuel oxygen on overall engine performance in the Premixed Charge Compression Ignition (PCCI) combustion mode. From literature, it is known that low reactive (i.e., low CN) fuels increase the ignition delay (ID) and therefore the degree of mixing prior to auto-ignition. With respect to fuel oxygen, it is known that this has a favorable impact on soot emissions by means of carbon sequestration. This makes the use of low CN oxygen fuels an interesting route to improve the applicability of PCCI combustion in diesel engines. In earlier studies, performed on a heavy-duty engine, cyclic oxygenates were found to consistently outperform their straight and branched counterparts with respect to curbing soot. This was attributed to a considerably lower CN.
Journal Article

Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines

2019-09-09
2019-24-0111
The introduction of new light-duty vehicle emission limits to comply under real driving conditions (RDE) is pushing the diesel engine manufacturers to identify and improve the technologies and strategies for further emission reduction. The latest technology advancements on the after-treatment systems have permitted to achieve very low emission conformity factors over the RDE, and therefore, the biggest challenge of the diesel engine development is maintaining its competitiveness in the trade-off “CO2-system cost” in comparison to other propulsion systems. In this regard, diesel engines can continue to play an important role, in the short-medium term, to enable cost-effective compliance of CO2-fleet emission targets, either in conventional or hybrid propulsion systems configuration. This is especially true for large-size cars, SUVs and light commercial vehicles.
Technical Paper

CFD Analysis of the Combustion Process in Dual-Fuel Diesel Engine

2018-04-03
2018-01-0257
Dual-fuel technology has the potential to offer significant improvements in the emissions of carbon dioxide from light-duty compression ignition engines. The dual-fuel (diesel/natural gas) concept represents a possible solution to reduce emissions from diesel engines by using natural gas (methane) as an alternative fuel. Methane was injected in the intake manifold while the diesel oil was injected directly into the engine. The present work describes the results of a numerical study on combustion process of a common rail diesel engine supplied with natural gas and diesel oil. In particular, the aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution. The study of dual-fuel engines that is carried out in this paper aims at the evaluation of the CFD potential, by a 3-dimensional code, to predict the main features of this technology.
Technical Paper

CFD Modeling and Validation of the ECN Spray G Experiment under a Wide Range of Operating Conditions

2019-09-09
2019-24-0130
The increasing diffusion of gasoline direct injection (GDI) engines requires a more detailed and reliable description of the phenomena occurring during the fuel injection process. As well known the thermal and fluid-dynamic conditions present in the combustion chamber greatly influence the air-fuel mixture process deriving from GDI injectors. GDI fuel sprays typically evolve in wide range of ambient pressure and temperatures depending on the engine load. In some particular injection conditions, when in-cylinder pressure is relatively low, flash evaporation might occur significantly affecting the fuel-air mixing process. In some other particular injection conditions spray impingement on the piston wall might occur, causing high unburned hydrocarbons and soot emissions, so currently representing one of the main drawbacks of GDI engines.
Technical Paper

Chaos Theory Approach as Advanced Technique for GDI Spray Analysis

2017-03-28
2017-01-0839
The paper reports an innovative method of analysis based on an advanced statistical techniques applied to images captured by a high-speed camera that allows highlighting phenomena and anomalies hardly detectable by conventional optical diagnostic techniques. The images, previously elaborated by neural network tools in order for clearly identifying the contours, have been analyzed in their time evolution as pseudo-chaotic variables that may have internal periodic components. In addition to the Fourier analysis, tools as Lyapunov and Hurst exponents and average Kω permitted to detect the chaos level of the signals. The use of this technique has permitted to distinguish periodic oscillations from chaotic variations and to detect those parameters that actually determine the spray behavior.
Technical Paper

Characterization of Combustion and Emissions in Light-Duty Diesel Engines Using High-Glycerol-Ethers/Diesel Blends

2015-09-06
2015-24-2445
In this paper, a detailed analysis of combustion and emissions is carried out on both metal and optical light duty diesel engines equipped with up-to-date combustion architecture. Both engines were fed with glycerol ethers mixture (GEM) in blend (10% and 20% v/v) within a commercial diesel fuel. The engines ran in significant operating points in the NEDC (New European Driving Cycle) emission homologation area. The results of the experimental campaign on the metal engine show comparable performances between the diesel/GEM blends and the diesel fuel and demonstrate benefits mainly in terms of soot production. The exhaust particles diameters of diesel/GEM blends shift toward smaller dimensions and the total number decreases. Moreover, at lower load conditions, the outputs show a worsening of the unburnt mainly ascribable to the fuel characteristics.
Technical Paper

Characterization of Combustion and Emissions of a Propane-Diesel Blend in a Research Diesel Engine

2016-04-05
2016-01-0810
The interest of the vehicle producers in fulfillment emission legislations without adopting after treatment systems is driving to the use of non-conventional energy sources for modern engines. A previous test campaign dealing with the use of blends of diesel and propane in a CI engine has pointed out the potential of this non-conventional fuel for diesel engines. The soft adaptation of the common rail injection system and the potential benefits, in terms of engine performances and pollutant emissions, encourage the use of propane-diesel blends if an optimization of the injection strategies is performed. In this work, the performances of a propane-diesel mixture in a research diesel engine have been investigated. The injection strategies of Euro 5 calibration have been used as reference for the development of optimized strategies. The aim of the optimization process was to ensure the same engine power output and reduce the pollutant emissions.
Technical Paper

Coking Effect of Different FN Nozzles on Injection and Combustion in an Optically Accessible Diesel Engine

2013-09-08
2013-24-0039
Interest on the issue of diesel injector nozzle deposits is rising in the last years due to its effects on engine performance. The alteration of nozzles geometry can cause a difference in fuel mass flow and influence smoke emission. Investigation on the effects of nozzle coking in a diesel injector has been the topic of this paper. The experiments have been carried out in a single cylinder optical engine operating in premixed mode. The head of a Euro 5 production engine has been mounted on an elongated cylinder and the production CR injection system has been used. A sapphire window has been set in the piston head in order to have visible access to phenomena occurring in the combustion chamber. Three injectors with decreasing flow number (FN) have been tested. Engine has been fed with commercial diesel fuel. High spatial and temporal resolution camera has been used for the acquisition of in-cylinder injection and combustion images.
X