Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

An Application of the Linear and Time-Invariant Method for the System-Level Thermal Simulation of an EV Battery

2015-04-14
2015-01-1197
This paper presents a system-level thermal model of a fluid-cooled Li-Ion battery module. The model is a reduced order model (ROM) identified by results from finite element analysis (FEA)/computational fluid dynamic (CFD) coupling simulation using the linear and time-invariant (LTI) method. The ROM consists of two LTI sub-systems: one of which describes the battery temperature response to a transient battery current, and the other of which takes into account of the battery temperature variation due to a heat flux induced by a varied inlet temperature of the battery cooling circuit. The thermal LTI model can be coupled to an electrical model to build a complete system-level battery ROM. Test examples show that the ROM is able to provide as accurate results as those from FEA/CFD coupling simulations.
Technical Paper

Analysis of Engine Dynamics Under Transient Run-Up Conditions

2004-03-08
2004-01-1454
The target of dynamic simulation is to investigate complex engine dynamic behavior in the whole speed range under different loading conditions in the most effective way during Engine Development Process (EDP). AVL has developed a method for transient run-up analysis by using the simulation tool AVL EXCITE. The main objective of this new method is the controlled speed increase by defining a speed ramp. Transient run-up analysis is of interest for different kind of analysis during the EDP, such as crankshaft dynamics and strength, low frequency vibration analysis, bracket strength and durability analysis, acoustic analysis, etc. By using this method the time required for simulations and thus the whole project duration is significantly reduced. Conventionally the speed range is divided in single speed steps and for each speed a separate transient simulation has to be performed. The number of these simulations depends on the required speed resolution.
Technical Paper

Coupling Node Reduction of a Synchronous Machine Using Multipoint-Constraints

2014-06-30
2014-01-2067
The noise vibration and harshness (NVH) simulation of electric machines becomes increasingly important due to the use of electric machines in vehicles. This paper describes a method to reduce the calculation time and required memory of the finite element NVH simulation of electrical machines. The stator of a synchronous electrical machine is modeled as a two-dimensional problem to reduce investigation effort. The electromagnetic forces acting on the stator are determined by FE-simulation in advance. Since these forces need to be transferred from the electromagnetic model to the structural model, a coupling algorithm is necessary. In order to reduce the number of nodes, which are involved in the coupling between the electromagnetic and structural model, multipoint constraints (MPC) are used to connect several coupling nodes to one new coupling node. For the definition of the new coupling nodes, the acting load is analyzed with a 2D-FFT.
Technical Paper

Modeling of the System Level Electric Drive using Efficiency Maps Obtained by Simulation Methods

2014-04-01
2014-01-1875
This work presents a physical model that calculates the efficiency maps of the inverter-fed Permanent Magnet Synchronous Machine (PMSM) drive. The corresponding electrical machine and its controller are implemented based on the two-phase (d-q) equivalent circuits that take into account the copper loss as well as the iron loss of the PMSM. A control strategy that optimizes the machine efficiency is applied in the controller to maximize the possible output torque. In addition, the model applies an analytical method to predict the losses of the voltage source inverter. Consequently, the efficiency maps within the entire operating region of the PMSM drive can be derived from the simulation results, and they are used to represent electric drives in the system simulation model of electric vehicles (EVs).
Technical Paper

Numerical Investigation in a Gear Drive of an Engine Balancing Unit with Respect to Noise, Friction and Durability

2015-09-06
2015-24-2526
This paper presents a methodology for numerical investigation of a full flexible balancer drive together with engine and crank train under realistic operating conditions where shaft dynamics, gear contact and rattle impacts, gear root stresses and friction losses in bearings and gear interaction are taken into account and can be balanced against each other to achieve the design criteria. Gear rattle is driven by the speed fluctuation of the crank train, the resistance torque (mainly friction), shaft inertia and the backlash in the gears. The actual trend to engine downsizing and up-torqueing increases the severity to rattle as engines are running on higher combustion pressures. This increases torque and speed fluctuation, which makes the detailed investigation in this torque transfer even more demanding. A common method to reduce gear rattle is the usage of so-called scissors gears.
Technical Paper

PMSM Noise - Simulation Measurement Comparison

2018-06-13
2018-01-1552
Growing development of hybrid and fully electrical drives increases demand for accurate prediction of noise and vibration characteristic of electric and electronic components. This paper describes the numerical and experimental investigation of noise emission from PMSM electric machine as a one of the most important noise sources in electric vehicles. Structural and air borne noise is measured on e-machine test rig and used for calibration and validation of the numerical model. The electro-magnetic field in PMSM is simulated using finite volume method. Electro-magnetic forces are applied as excitation to the 3D FE model of e-machine, mounded on test frame. Material properties are tuned using results from experimental modal analysis including identification of orthotropic characteristic of stator laminated core, assembled together with coil and end winding. Structural vibrations are calculated by modal frequency response analysis and applied as excitation in air borne noise simulation.
Technical Paper

Power Electronic Noise-Simulation Measurement Comparison

2019-06-05
2019-01-1451
A growing development of hybrid or fully electrical drives increases the demand for an accurate prediction of noise and vibration characteristics of electric and electronic components. This paper describes the numerical and experimental investigation of noise emissions from power electronics, as one of the new important noise sources in electric vehicles. The noise emitted from the printed circuit board (PCB) equipped with multi-layer ceramic capacitors (MLCC) is measured and used for the calibration and validation of numerical model. Material properties are tuned using results from experimental modal analysis, with special attention to the orthotropic characteristic of the PCB glass-reinforced epoxy laminate sheet (FR-4). Electroacoustic excitation is pre-calculated using an extension of schematic-based EMC simulation and applied to the structural model. Structural vibrations are calculated with a commercial FEM solver with the modal frequency response analysis.
Technical Paper

Root Cause Analysis and Structural Optimization of E-Drive Transmission

2020-09-30
2020-01-1578
This paper describes the simulation tool chain serving to design and optimize the transmission of an electric axle drive from concept to final design with respect to NVH. A two-stage transmission of an eAxle is designed from scratch by the initial layout of gears and shafts, including the optimization of gear micro geometry. After the shaft system and bearings are defined, the concept design of the transmission housing is evaluated with the help of a basic topology optimization regarding stiffness and certain eigenfrequencies. In the next step a fully flexible multi-body dynamic (MBD) and acoustic analysis of the transmission is performed using internally calculated excitations due to gear contact and bearing interaction with shaft and gear dynamics for the entire speed and load range. Critical operating conditions in terms of shaft dynamics, structure borne noise and noise radiation are evaluated and selected as target for optimization in the following steps.
Journal Article

Simulation Methodology for Consideration of Injection System on Engine Noise Contribution

2010-06-09
2010-01-1410
The target of the investigation is the particular influence of a fuel injection system and its components as a noise source in automotive engines. The applied methodology is demonstrated on an automotive Inline 4-cylinder Diesel engine using a common rail system. This methodology is targeted as an extension of a typical standard acoustic simulation approach for combustion engines. Such approaches basically use multi-body dynamic simulation with interacting FEM based flexible structures, where the main excitation crank train, timing drive, valve train system and piston secondary motion are considered. Within the extended approach the noise excitation of the hydraulic and mechanical parts of the entire fuel system is calculated and subsequently considered within the multi-body dynamic simulation for acoustic evaluation of structural vibrations.
X