Refine Your Search

Topic

Author

Search Results

Journal Article

A ‘Microscopic’ Structural Mechanics FE Model of a Lithium-Ion Pouch Cell for Quasi-Static Load Cases

2013-04-08
2013-01-1519
This study deals with the experimental investigation of the mechanical properties of a lithium-ion pouch cell and its modelling in an explicit finite element simulation code. One can distinguish between ‘macroscopic’ and ‘microscopic’ modelling approaches. In the ‘macroscopic’ approach, one material model approximates the behaviour of multiple inner cell layers. In the ‘microscopic’ approach, which is used in the present study, all layers and their interactions are modelled separately. The cell under study is a pouch-type lithium-ion cell with a liquid electrolyte. With its cell chemistry, design, size and capacity it is usable for automotive applications and can be assembled into traction batteries. One cell sample was fully discharged and disassembled, and its components (anode, cathode, separator and pouch) were examined and measured by electron microscopy. Components were also tensile tested.
Technical Paper

An Application of the Linear and Time-Invariant Method for the System-Level Thermal Simulation of an EV Battery

2015-04-14
2015-01-1197
This paper presents a system-level thermal model of a fluid-cooled Li-Ion battery module. The model is a reduced order model (ROM) identified by results from finite element analysis (FEA)/computational fluid dynamic (CFD) coupling simulation using the linear and time-invariant (LTI) method. The ROM consists of two LTI sub-systems: one of which describes the battery temperature response to a transient battery current, and the other of which takes into account of the battery temperature variation due to a heat flux induced by a varied inlet temperature of the battery cooling circuit. The thermal LTI model can be coupled to an electrical model to build a complete system-level battery ROM. Test examples show that the ROM is able to provide as accurate results as those from FEA/CFD coupling simulations.
Technical Paper

Battery Thermal Management Simulation - 1D+1D Electrochemical Battery and 3D Module Modeling on Vehicle System Level

2021-04-06
2021-01-0757
Approaching engineering limits for the thermal design of battery modules requires virtual prototyping and appropriate models with respect to physical depth and computational effort. A multi-scale and multi-domain model describes the electrochemical behavior of a single battery unit cell in 1D+1D at the level of intra-cell phenomena, and it applies a 3D thermal model at module level. Both models are connected within a common vehicle simulation platform. The models are discussed with special emphasis on battery degradation such as solid electrolyte interphase layer formation, decomposition and lithium plating. The performance of the electrochemical model is assessed by discharge cycles and repeated charge/discharge simulations. The thermal module model is compared to CFD reference data and studied with respect to its grid sensitivity.
Technical Paper

Challenges and Opportunities in Variant Calibration of Hybrid Vehicles

2014-10-13
2014-01-2889
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term “hybrid vehicle” can cover a wide range of differing technologies and drivetrain topologies, this has led to a large amount of vehicles that call themselves “hybrid”. This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required.
Technical Paper

Challenges and Opportunities of Variant Calibration of Hybrid Vehicles

2013-03-25
2013-01-0128
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term "hybrid vehicle" can cover a wide range of differing technologies and drivetrain topologies, this has led to a plethora of vehicles that call them "hybrid." This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required.
Technical Paper

Challenges and Solutions for Range Extenders - From Concept Considerations to Practical Experiences

2011-06-09
2011-37-0019
For a broad acceptance of electric vehicles, the trade-off between all electric range and battery cost respectively weight represents the most important challenge. The all electric range obtained under real world conditions most often deviates significantly from the nominal value which is measured under idealized conditions. Under extreme conditions - slow traffic and demanding requirements for cabin heating or cooling - the electrical range might become less a question of spatial distance but even more of total operation time. Whereas with conventional powertrain, high flexibility of the total driving range can be obtained without sacrificing cost, with a pure battery vehicle this results in extreme high cost and weight of the energy storage. Therefore the difference between the typical daily driving range (e.g. in Germany 80-90% is below 50 km) and the minimum total range requested by most customers for acceptance of battery vehicles (200- 250 km), becomes essential.
Technical Paper

Concepts for Mechanical Abuse Testing of High-Voltage Batteries

2012-04-16
2012-01-0124
Currently lithium-batteries are the most promising electrical-energy storage technology in fully-electric and hybrid vehicles. A crashworthy battery-design is among the numerous challenges development of electric-vehicles has to face. Besides of safe normal operation, the battery-design shall provide marginal threat to human health and environment in case of mechanical damage. Numerous mechanical abuse-tests were performed to identify load limits and the battery's response to damage. Cost-efficient testing is provided by taking into account that the battery-system's response to abuse might already be observed at a lower integration-level, not requiring testing of the entire pack. The most feasible tests and configurations were compiled and discussed. Adaptions of and additions to existing requirements and test-procedures as defined in standards are pointed out. Critical conditions that can occur during and after testing set new requirements to labs and test-rigs.
Technical Paper

Experimental Design for Characterization of Force Transmissibility through Bearings in Electric Machines and Transmissions

2018-06-13
2018-01-1473
With the increasing stringent emissions legislation on ICEs, alongside requirements for enhanced fuel efficiency as key driving factors for many OEMs, there are many research activities supported by the automotive industry that focus on the development of hybrid and pure EVs. This change in direction from engine downsizing to the use of electric motors presents many new challenges concerning NVH performance, durability and component life. This paper presents the development of experimental methodology into the measurement of NVH characteristics in these new powertrains, thus characterizing the structure borne noise transmissibility through the shaft and the bearing to the housing. A feasibility study and design of a new system level test rig have been conducted to allow for sinusoidal radial loading of the shaft, which is synchronized with the shaft’s rotary frequency under high-speed transient conditions in order to evaluate the phenomena in the system.
Technical Paper

Fast Charging at Cold Conditions—Model-Based Control Enabled by Multi-Scale Multi-Domain Plant Model

2022-03-29
2022-01-0702
Fast charging of batteries at cold conditions faces the challenge of promoting undesired cell degradation phenomena such as lithium plating. The occurrence of lithium plating is strongly related to local surface potentials and temperatures involving the scales of the electrode surface, the unit cell and the entire module or pack. A multi-scale, multi-domain model is presented, enhancing a Newman based unit cell model with consistent models for heat generation and lithium plating and integrating this 1D+1D approach into a thermal 3D model on module level. The basic equations are presented and three different plating models from literature are discussed. The thermal model is assessed in open-loop simulations and the different plating approaches are compared in charge/discharge simulations at different operating conditions. The full multi-scale, multi-domain model is applied as a virtual sensor for model-based control of fast charging at cold conditions.
Technical Paper

HEV Evaluation in Simulation Phase Based on Predicted Sound Behavior

2020-09-30
2020-01-1511
Grown interest in complex modern Hybrid Electric Vehicle (HEV) concepts has raised new challenges in the field of NVH. The switch between the Internal Combustion Engine (ICE) and the Electric Motor (EM) at low speeds produces undesirable vibrations and a sudden raise of noise levels that effects the sound quality and passenger comfort achieved by the close-to-silent electric powertrain operation. Starting the ICE in the most suitable driving situation to create a seamless transition between driving modes can be the key to minimize the NVH quality impact in driver and passenger’s perception in HEVs. To integrate this important aspect in the early stages of the development and design phase, simulation technologies can be used to address the customer acceptance. By analyzing NVH measurements, the different noise components of the vehicle operation can be separated into ICE-related noise, EM-related noise and driving noise.
Technical Paper

High load Operation of Lithium-Ion Batteries – Modeling Study on a LiFePO4 Graphite Cell

2024-04-09
2024-01-2193
Modeling of lithium iron phosphate electrodes calls for appropriate extensions of established model approaches. An electrochemical pseudo two-dimensional and a single-particle model are enhanced to address the phase separating behavior of this material with a variable solid state diffusion model. A particle size distribution model tackles the heterogeneity of the electrode microstructure. Both models are embedded in a framework to describe multi-layer electrode designs featuring segregated material properties. The models are parameterized following literature replicating a good match with measured discharge curves at low, medium and high currents. A simplified version of the rigorous model shows the effort of reparameterization, the computational advantage of model order reduction techniques, the model accuracy and application scope.
Technical Paper

Hybrid-Powertrain Development Approach to Reduce Number of Prototype Vehicles by Taking Right Decision in Early Development Phases on Engine Testbeds

2021-09-22
2021-26-0449
Today’s automotive industry is changing rapidly towards environmentally friendly vehicle propulsion systems. All over the globe, legislative CO2 consumption targets are under discussion and partly already in force. Hybrid powertrain configurations are capable to lower fuel consumption and limit pollutant emissions compared to pure IC-Engine driven powertrains. Depending on boundary conditions a numerous of different hybrid topologies- and its control strategies are thinkable. Typical approach is to find the optimum hybrid layout and strategy, by performing certain technical design tasks in office simulation directly followed by vehicle prototype tests on the chassis dyno and road. This leads to a high number of prototype vehicles, overload on chassis dynos, time consuming road test and finally to tremendous costs. Our developed approach is using the engine testbed with simulation capabilities as bridging element between office and vehicle development environment.
Technical Paper

Low Frequency Impedance Spectroscopy – Modeling Study on the Transferability of Solid Diffusion Coefficients

2023-04-11
2023-01-0505
This work elaborates the transferability of electrode diffusion coefficients gained from fitting procedures in frequency domain to an electrochemical battery model run in time domain. An electrochemical battery model of an NMC622 half-cell electrode is simulated with sinusoidal current excitations at different frequencies. The current and voltage signals are analyzed in frequency domain via Nyquist and Bode plots. The frequency domain analysis of time domain simulations is applied to assess the numerical convergence of the simulation and the sensitivity on particle diameter, electrode and electrolyte diffusion coefficients. The simulated frequency spectra are used to fit the electrode diffusion coefficient by means of different electrical equivalent circuit models and the electrochemical battery model itself. The fitted diffusion coefficients from the different electrical equivalent circuit models deviate by one order of magnitude from the a priori known reference data.
Technical Paper

Magnetostrictive and Magnetic Sources of Noise in the Electric Motors

2016-06-15
2016-01-1838
In electric motors the working torque results from the magnetic forces (due to the magnetic field). The magnetic forces are also a direct source of structural excitation; further, the magnetic field is an indirect source of structural excitation in the form of magnetostriction. In the last decade other sources of structural excitation (e.g. mechanical imbalance, natural dynamics of the electric motor) have been widely researched and are well understood. On the other hand, the excitation due to the magnetic forces and magnetostriction is gaining interest in the last period; especially in the field of auto-mobility. Due to the broadband properties of the magnetic field (e.g. Pulse-Width-Modulation(PWM), multi-harmonic excitation), the direct structural excitation in the form of magnetic forces is also broadband.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Journal Article

NVH of Electric Vehicles with Range Extender

2010-06-09
2010-01-1404
Intensive R&D is currently performed worldwide on hybrid and electric vehicles. For full electric vehicles the driving range is limited by the capacity of currently available batteries. If such a vehicle shall increase its driving range some range extending backup system should be available. Such a Range Extender is a small system of combustion engine and electric generator which produces the required electricity for charging the batteries in time. Since the acoustic response of an electric motor driving the vehicle and of a combustion engine as part of a Range Extender is very different by nature an extensive acoustic tuning of the Range Extender is necessary to meet the requirements of exterior vehicle noise and passenger comfort. This paper describes the NVH (noise, vibration & harshness) development work of a range extender within the AVL approach of an electrically driven passenger car with range extender.
Technical Paper

Novel Shift Control without Clutch Slip in Hybrid Transmissions

2017-03-28
2017-01-1110
With the introduction of new regulations on emissions, fuel efficiency, driving cycles, etc. challenges for the powertrains are significantly increasing. In order to fulfil these regulations, hybrid-electric powertrains are an unquestioned option for short and long-term solutions. Hybridization however, is not only fulfilling these challenging efficiency or emission targets, but also allows numerous new possibilities on control strategies of different powertrain elements as well as new approaches of designing them. A good example is transmissions where, hybridization allows a new transmission type called Dedicated Hybrid Transmission (DHT), which enables to use novel control strategies bringing improved performance, driveability, durability and NVH behavior. This paper focuses on the novel shift strategy where friction clutches do not have to slip.
Journal Article

Options for Coupled Thermal-Electric Modeling of Battery Cells and Packs

2014-04-01
2014-01-1834
Integration of advanced battery systems into the next generation of hybrid and electric vehicles will require significant design, analysis, and test efforts. One major design issue is the thermal management of the battery pack. Analysis tools are being developed that can assist in the development of battery pack thermal design and system integration. However, the breadth of thermal design issues that must be addressed requires that there are a variety of analysis tools to address them efficiently and effectively. A set of battery modeling tools has been implemented in the thermal modeling software code PowerTHERM. These tools are coupled thermal-electric models of battery behavior during current charge and discharge. In this paper we describe the three models in terms of the physics they capture, and their input data requirements. We discuss where the capabilities and limitations of each model best align with the different issues needed to be addressed by analysis.
Technical Paper

Parameterization of an Electrochemical Battery Model Using Impedance Spectroscopy in a Wide Range of Frequency

2024-04-09
2024-01-2194
The parameterization of the electrochemical pseudo-two-dimensional (P2D) model plays an important role as it determines the acceptance and application range of subsequent simulation studies. Electrochemical impedance spectroscopy (EIS) is commonly applied to characterize batteries and to obtain the exchange current density and the solid diffusion coefficient of a given electrode material. EIS measurements performed with frequencies ranging from 1 MHz down to 10 mHz typically do not cover clearly isolated solid state diffusion processes of lithium ions in positive or negative electrode materials. To extend the frequency range down to 10 μHz, the distribution function of relaxation times (DRT) is a promising analysis method. It can be applied to time-domain measurements where the battery is excited by a current pulse and relaxed for a certain period.
Technical Paper

Power Electronic Noise-Simulation Measurement Comparison

2019-06-05
2019-01-1451
A growing development of hybrid or fully electrical drives increases the demand for an accurate prediction of noise and vibration characteristics of electric and electronic components. This paper describes the numerical and experimental investigation of noise emissions from power electronics, as one of the new important noise sources in electric vehicles. The noise emitted from the printed circuit board (PCB) equipped with multi-layer ceramic capacitors (MLCC) is measured and used for the calibration and validation of numerical model. Material properties are tuned using results from experimental modal analysis, with special attention to the orthotropic characteristic of the PCB glass-reinforced epoxy laminate sheet (FR-4). Electroacoustic excitation is pre-calculated using an extension of schematic-based EMC simulation and applied to the structural model. Structural vibrations are calculated with a commercial FEM solver with the modal frequency response analysis.
X