Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

Accelerated Fatigue and Modal Parameter Identification of Lightweight Structures

2014-06-30
2014-01-2095
Car components are exposed to the random/harmonic/impact excitation which can result in component failure due to vibration fatigue. The stress and strain loads do depend on local stress concentration effects and also on the global structural dynamics properties. Standardized fatigue testing is long-lasting, while the dynamic fatigue testing can be much faster; however, the dynamical changes due to fatigue are usually not taken into account and therefore the identified fatigue and structural parameters can be biased. In detail: damage accumulation results in structural changes (stiffness, damping) which are hard to measure in real time; further, structural changes change the dynamics of the loaded system and without taking this changes into account the fatigue load in the stress concentration zone can change significantly (even if the excitation remains the same). This research presents a new approach for accelerated vibration testing of real structures.
Technical Paper

Active Path Tracking - A Rapid Method for the Identification of Structure Borne Noise Paths in Vehicle Chassis

2001-04-30
2001-01-1470
The effective identification and control of powertrain structure borne harmonic noise is one key for achieving the desired noise pattern in a vehicle. Much work is being done in this field to refine and develop transfer path analysis techniques suitable for application at each stage of a vehicle development program. For vehicle application, transfer path analysis and source identification techniques are in use today with varying degrees of success and application complexity. Investigation tools which are fast, do not require extensive vehicle dismantling and yet provide reliable answers, are of great value to NVH and sound quality engineers. A novel Active Path Tracking (APT) method has been developed which is fast to apply and offers immediate practical confirmation of the contributions of all identified chassis transmission paths to the vehicle interior.
Journal Article

CFD-based Modelling of Flow Conditions Capable of Inducing Hood Flutter

2010-04-12
2010-01-1011
This paper presents a methodology for simulating Fluid Structure Interaction (FSI) for a typical vehicle bonnet (hood) under a range of onset flow conditions. The hood was chosen for this study, as it is one of the panels most prone to vibration; particularly given the trend to make vehicle panels lighter. Among the worst-case scenarios for inducing vibration is a panel being subjected to turbulent flow from vehicle wakes, and the sudden peak loads caused by emerging from a vehicle wake. This last case is typical of a passing manoeuvre, with the vehicle suddenly transitioning from being immersed in the wake of the leading vehicle, to being fully exposed to the free-stream flow. The transient flowfield was simulated for a range of onset flow conditions that could potentially be experienced on the open road, which may cause substantial vibration of susceptible vehicle panels.
Journal Article

Characterization of Brake Creep Groan Vibrations

2020-09-30
2020-01-1505
Creep groan is an annoying brake noise at very low speeds of the vehicle. In general, stick-slip between brake disk and brake pads is believed to be the most dominating vibration mechanism of creep groan phenomena. This paper will show by sophisticated measurement techniques that stick-slip and speed-dependent friction is an important trigger. However, the overall vibration is much more complex than stick-slip reproduced by simple conveying belt minimal models. It turns out that in typical brake systems of passenger cars, creep groan appears from 15 to 25 Hz as well as 60 to 100 Hz. The mechanism from 15 to 25 Hz is highly impulsive and “hard”. Transitions between stick and slip phases trigger coupled nonlinear vibrations of the complete brake and suspension system. From 60 to 100 Hz, the vibrations show a more harmonic-like and “soft” signature, caused mainly by a speed-dependent friction behavior.
Technical Paper

Dynamic Substructuring for Sources Contributions Analysis in Internal Combustion Engines

2016-06-15
2016-01-1761
For vibration and acoustics vehicle development, one of the main challenges is the identification and the analysis of the noise sources, which is required in order to increase the driving comfort and to meet the stringent legislative requirements for the vehicle noise emission. Transfer Path Analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. This technique is commonly applied on test measurements, based on prototypes, at the end of the design process. In order to apply such methodology already within the design process, a contribution analysis method based on dynamic substructuring of a multibody system is proposed with the aim of improving the quality of the design process for vehicle NVH assessment and to shorten development time and cost.
Technical Paper

Gear Whine Noise Investigation of a Bus Rear Axle - Todays Possibilities and Outlook

2017-06-05
2017-01-1820
This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi-Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain - includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
Technical Paper

Influence of Low-Frequency Powertrain-Vibrations on Driveability-Assessments

2010-06-09
2010-01-1419
Cost- and time-efficient vehicle development is increasingly depending on the usage of adequate software tools to enhance effectiveness. The aim is a continuous integration of simulation tools and test environments within the vehicle development process in order to save time and costs. This paper introduces a procedure to reveal the cause of low-frequency powertrain vibrations and the influences on the dynamic behavior of a vehicle on a roller test bench. The affected longitudinal acceleration signal is an arbitrative criterion for the driveability assessment with AVL-DRIVE™, a well-known driveability analysis and development tool for the objective assessment concerning NVH and driveability aspects of full vehicles. These experimental studies are embedded into an approach, which describes the functional assembly of three applied test environments "road," "roller test bench" and "simulation" with according tools in order to facilitate an integrated driveability development process.
Technical Paper

Modelling and Simulation of General Path Centrifugal Pendulum Vibration Absorbers

2015-09-06
2015-24-2387
The aim of this paper is the study of the Centrifugal Pendulum Vibration Absorber (CPVA) dynamic behavior, with the background of improved vibration isolation and damping quality through a wide range of operating speeds. The CPVAs are passive devices, which are used in rotating machinery to reduce the torsional vibration without decreasing performance. After a first use of these damping systems in the field of aeronautics, nowadays CPVAs are employed also in railway and automotive applications. In principle, the CPVA is a mass, mounted on a rotor, which moves along a defined path relative to the rotor itself, driven by centrifugal effects and by the rotor's torsional vibrations. The advantage that such absorbers provide is the capability to counteract torsional vibrations arising with frequencies proportional to the mean operating speed. This is in particular the case with Internal Combustion Engines (ICE) where the induced vibrations are caused by the combustions process.
Technical Paper

Multi-Physics Simulation Model for Noise and Vibration Effects in Hybrid Vehicle Powertrain

2014-06-30
2014-01-2093
Over the past 30 years, simulation of the N&V (Noise and Vibration) behaviour of automotive drivelines became an integral part of the powertrain development process. With current and future HEVs (Hybrid-Electrical Vehicles), additional phenomena and effects have entered the scene and need to be taken into account during layout/design as well as optimization phase. Beside effects directly associated with the e-components (namely electric whistle and whine), torque changes caused by activation/deactivation of the e-machine give rise to vibration issues (e.g. driveline shuffle or clonk) as well. This is in particular true for transient operation conditions like boosting and recuperation. Moreover, aspects of starting the Internal Combustion Engine (ICE) using the built-in e-machine in conjunction with the dynamic behaviour of torsional decoupling devices become increasingly important. In order to cope with above-mentioned effects a multi-physics simulation approach is required.
Journal Article

NVH of Electric Vehicles with Range Extender

2010-06-09
2010-01-1404
Intensive R&D is currently performed worldwide on hybrid and electric vehicles. For full electric vehicles the driving range is limited by the capacity of currently available batteries. If such a vehicle shall increase its driving range some range extending backup system should be available. Such a Range Extender is a small system of combustion engine and electric generator which produces the required electricity for charging the batteries in time. Since the acoustic response of an electric motor driving the vehicle and of a combustion engine as part of a Range Extender is very different by nature an extensive acoustic tuning of the Range Extender is necessary to meet the requirements of exterior vehicle noise and passenger comfort. This paper describes the NVH (noise, vibration & harshness) development work of a range extender within the AVL approach of an electrically driven passenger car with range extender.
Technical Paper

Power Electronic Noise-Simulation Measurement Comparison

2019-06-05
2019-01-1451
A growing development of hybrid or fully electrical drives increases the demand for an accurate prediction of noise and vibration characteristics of electric and electronic components. This paper describes the numerical and experimental investigation of noise emissions from power electronics, as one of the new important noise sources in electric vehicles. The noise emitted from the printed circuit board (PCB) equipped with multi-layer ceramic capacitors (MLCC) is measured and used for the calibration and validation of numerical model. Material properties are tuned using results from experimental modal analysis, with special attention to the orthotropic characteristic of the PCB glass-reinforced epoxy laminate sheet (FR-4). Electroacoustic excitation is pre-calculated using an extension of schematic-based EMC simulation and applied to the structural model. Structural vibrations are calculated with a commercial FEM solver with the modal frequency response analysis.
Technical Paper

Still-Camera Based 3D Experimental Modal Analysis

2021-08-31
2021-01-1092
Image-based methods in vibration measurements typically require the use of complex high-speed camera systems. By using the recently introduced Spectral Optical Flow Imaging method, full-field high-frequency vibration data can be measured using a cost-effective still-frame camera. Using a single camera, only the motion perpendicular to the optical axis can typically be identified. Depth information, lost in the 2D imaging process, can be obtained by employing multi-camera imaging systems. Alternatively, the recently introduced frequency domain triangulation method offers a way of measuring full-field 3D deflection shapes using a single, moving camera. This research presents the required theoretical background to combine the Spectral Optical Flow Imaging and frequency-domain triangulation methods in an experimental modal analysis experiment using a single, moving still-frame camera.
Technical Paper

Vehicle Class Based Validation Program for Electrified Powertrain Vibration Testing

2023-04-11
2023-01-0920
Vibration testing is common in automotive industry validation and gains greater significance with increasing numbers of electrical components, which are particularly suspectable to vibration related failures. While the nature and intention of vibration testing is common, many contradicting testing standards claim to be a one-size-fits-all solution, leading to questions of which standard is correct for any specific application. This is compounded by the vast variation in vehicle types and applications (suspension systems, dampers, powertrain mass, tire radius, intended usage, etc.) This paper seeks to offer and demonstrate a method to determine characteristic vibration profiles, based on vehicle classes, and illuminate the process to accelerate these to an appropriate test profile. This can either be used to directly validate a system or to support the selection of the most appropriate vibration profile from options within standards.
X