Refine Your Search

Topic

Author

Search Results

Journal Article

A Computational Approach to Assess Buffeting and Broadband Noise Generated by a Vehicle Sunroof

2015-04-14
2015-01-1532
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting (also known as boom) targets and broadband noise targets for the fully open sunroof with deflector and for the sunroof in vent position. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
Journal Article

A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process

2013-05-13
2013-01-1933
For most car manufacturers, wind noise from the greenhouse region has become the dominant high frequency noise contributor at highway speeds. Addressing this wind noise issue using experimental procedures involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process. Previously, a computational approach that couples an unsteady computational fluid dynamics solver (based on a Lattice Boltzmann method) to a Statistical Energy Analysis (SEA) solver had been validated for predicting the noise contribution from the side mirrors. This paper presents the use of this computational approach to predict the vehicle interior noise from the windshield wipers, so that different wiper placement options can be evaluated early in the design process before the surface is frozen.
Journal Article

A Fully Coupled, 6 Degree-of-Freedom, Aerodynamic and Vehicle Handling Crosswind Simulation using the DrivAer Model

2016-04-05
2016-01-1601
In a real-world environment, a vehicle on the road is subjected to a range of flow yaw angles, the most severe of which can impact handling and stability. A fully coupled, six degrees-of-freedom CFD and vehicle handling simulation has modelled the complete closed loop system. Varying flow yaw angles are introduced via time dependent boundary conditions and aerodynamic loads predicted, whilst a handling model running simultaneously calculates the resulting vehicle response. Updates to the vehicle position and orientation within the CFD simulation are achieved using the overset grid method. Using this approach, a crosswind simulation that follows the parameters of ISO 12021:2010 (Sensitivity to lateral wind - Open-loop test method using wind generator input), was performed using the fastback variant of the DrivAer model. Fully coupled aerodynamic and vehicle response was compared to that obtained using the simplified quasi-steady and unsteady, one way coupled method.
Journal Article

A Miller Cycle Engine without Compromise - The Magma Concept

2017-03-28
2017-01-0642
The Magma engine concept is characterised by a high compression ratio, central injector combustion system employed in a downsized direct-injection gasoline engine. An advanced boosting system and Miller cycle intake-valve closing strategies are used to control combustion knock while maintaining specific performance. A key feature of the Magma concept is the use of high CR without compromise to mainstream full-load performance levels. This paper focuses on development of the Magma combustion system using a single-cylinder engine, including valve event, air motion and injection strategies. Key findings are that Early Intake Valve Closing (EIVC) is effective both in mitigating knock and improving fuel consumption. A Net Indicated Mean Effective Pressure (NIMEP) equivalent to 23.6 bar Brake Mean Effective Pressure (BMEP) on a multi-cylinder engine has been achieved with a geometric compression ratio of 13:1.
Technical Paper

A New Generation Lean Gasoline Engine for Premium Vehicle CO2 Reduction

2021-04-06
2021-01-0637
In an era of rapidly increasing vehicle electrification, the gasoline engine remains a vital part of the passenger car powertrain portfolio. Lean-burn combustion is a formidable means for reducing the CO2 emissions of gasoline engines but demands the use of sophisticated emissions control. A 2.0 litre turbocharged direct-injection gasoline engine has been developed with a lean homogeneous combustion system matched to a robust lean and stoichiometric-capable exhaust aftertreatment. The aftertreatment system includes an SCR system and a GPF with filtration down to 10 nm particle size. The engine is equipped with a continuously variable valve-lift system, high-tumble ports and a high-energy ignition system; the boosting system comprises a variable geometry turbocharger and a 48 V electrical supercharger. The work reported formed part of the PaREGEn (Particle Reduced, Efficient Gasoline Engines) project under the Horizon 2020 framework programme.
Technical Paper

A New Method of Powertrain Noise Source Identification using a Particle Velocity Probe for Acoustic Intensity Measurement

2009-05-19
2009-01-2173
This paper describes the use of a new probe for direct measurement of particle velocity for an acoustic intensity survey of a test engine at Ricardo UK. The new probe includes both a pressure and a particle velocity transducer in a single package [2], utilising the miniature hot wire principle. This probe enables near-field direct measurement of the acoustic intensity on a test powertrain, and is referred to here as the ‘P-U’ (Pressure- Velocity) Probe. The new technique has significant advantages over the traditional pressure differential acoustic intensity technique that include a wider frequency bandwidth, better rejection of the reverberant sound field and the ability to easily and safely take measurements over a wider range of engine operating conditions. The use of the method for noise source identification is described and the test results are shown to compare well with those obtained from the traditional pressure differential acoustic intensity technique.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Journal Article

A Parametric Study of Automotive Rear End Geometries on Rear Soiling

2017-03-28
2017-01-1511
The motivation for this paper is to consider the effect of rear end geometry on rear soiling using a representative generic SUV body. In particular the effect of varying the top slant angle is considered using both experiment and Computational Fluid Dynamics (CFD). Previous work has shown that slant angle has a significant effect on wake shape and drag and the work here extends this to investigate the effect on rear soiling. It is hoped that this work can provide an insight into the likely effect of such geometry changes on the soiling of similarly shaped road vehicles. To increase the generality of results, and to allow comparison with previously obtained aerodynamic data, a 25% scale generic SUV model is used in the Loughborough University Large Wind Tunnel. UV doped water is sprayed from a position located at the bottom of the left rear tyre to simulate the creation of spray from this tyre.
Technical Paper

A Percipient Analysis of Jaguar I-PACE Electric Vehicle Energy Consumption Using Big Data Analytics

2024-04-09
2024-01-2879
Vehicle efficiency and range, along with the DC charging speed, are deemed as the most important criteria for an electric vehicle currently. The electric vehicle energy consumption is impacted by the change in temperature along with the driving style and average speed of a customer, all other factors being constant. Hence understanding the patterns and impact of different aspects of an EV range & charging speed is crucial in delivering an electric vehicle with robust efficiency across all weather conditions. In this paper we have analysed vehicle parameters of global Jaguar I-PACE customer data. We present and analyse the collated big data of around 50,000+ unique vehicles with a data aggregate of well over 482 million km. In moderate ambient conditions the analysis indicated a good correlation with 50th to 75th percentile drivers’ energy consumption to the EPA label figure.
Journal Article

Accurate Cycle Predictions and Calibration Optimization Using a Two-Stage Global Dynamic Model

2017-03-28
2017-01-0583
With the introduction in Europe of drive cycles such as RDE and WLTC, transient emissions prediction is more challenging than before for passenger car applications. Transient predictions are used in the calibration optimization process to determine the cumulative cycle emissions for the purpose of meeting objectives and constraints. Predicting emissions such as soot accurately is the most difficult area, because soot emissions rise very steeply during certain transients. The method described in this paper is an evolution of prediction using a steady state global model. A dynamic model can provide the instantaneous prediction of boost and EGR that a static model cannot. Meanwhile, a static model is more accurate for steady state engine emissions. Combining these two model types allows more accurate prediction of emissions against time. A global dynamic model combines a dynamic model of the engine air path with a static DoE (Design of Experiment) emission model.
Technical Paper

Active Grille Shutters Control and Benefits in Medium to Large SUV: A System Engineering Approach

2020-04-14
2020-01-0945
Whilst the primary function of the active grille shutters is to reduce the aerodynamic drag of the car, there are some secondary benefits like improving the warm up time of engine and also retaining engine heat when parked. In turbocharged IC engines the air is compressed (heated) in the turbo and then cooled by a low temperature cooling system before going into the engine. When the air intake temperature exceeds a threshold value, the engine efficiency falls - this drives the need for the cooling airflow across the radiator in normal operation. Airflow is also required to manage the convective heat transfer across various components in the engine bay for its lifetime thermal durability. Grill shutters can also influence the aerodynamic lift balance thus impacting the vehicle dynamics at high speed. The vehicle HVAC system also relies on the condenser in the front heat exchanger pack disposing the waste heat off in the most efficient way.
Journal Article

Advances in Experimental Vehicle Soiling Tests

2020-04-14
2020-01-0681
The field of vision of the driver during wet road conditions is essential for safety at all times. Additionally, the safe use of the increasing number of sensors integrated in modern cars for autonomous driving and intelligent driver assistant systems has to be ensured even under challenging weather conditions. To fulfil these requirements during the development process of new cars, experimental and numerical investigations of vehicle soiling are performed. This paper presents the surface contamination of self- and foreign-soiling tested in the wind tunnel. For these type of tests, the fluorescence method is state-of-the-art and widely used for visualizing critical areas. In the last years, the importance of parameters like the contact angle have been identified when designing the experimental setup. In addition, new visualization techniques have been introduced.
Technical Paper

Advances in Modelling A-Pillar Water Overflow

2015-04-14
2015-01-1549
Driving when it is raining can be a stressful experience. Having a clear unobstructed view of the vehicles and road around you under these conditions is especially important. Heavy rain conditions can however overwhelm water management devices resulting in water rivulets flowing over the vehicle's side glass. These rivulets can significantly impair the driver's ability to see the door mirror, and laterally onto junctions. Designing water management features for vehicles is a challenging venture as testing is not normally possible until late in the design phase. Additionally traditional water management features such as grooves and channels have both undesirable design and wind noise implications. Having the ability to detect water management issues such as A-pillar overflow earlier in the design cycle is desirable to minimize the negative impact of water management features. Numerical simulation of windscreen water management is desirable for this reason.
Journal Article

Analytical and Developmental Techniques Utilized in the Structural Optimization of a New Lightweight Diesel Engine

2015-06-15
2015-01-2298
Jaguar Land Rover (JLR) has designed and developed a new inline 4 cylinder engine family, branded Ingenium. In addition to delivering improved emissions and fuel economy over the outgoing engine, another key aim from the outset of the program was to reduce the combustion noise. This paper details the NVH development of the lead engine in this family, a 2.0 liter common rail turbo diesel. The task from the outset of this new program was to reduce the mass of the engine by 21.5 kg, whilst also improving the structural attenuation of the engine by 5 dB in comparison to the outgoing engine. Improving the structural attenuation by 5 dB was not only a key enabler in reducing combustion noise, but also helped to achieve a certified CO2 performance of 99 g/km in the all-new Jaguar XE model, by allowing more scope for increasing cylinder pressure forcing without compromising NVH.
Journal Article

Application of CFD to Predict Brake Disc Contamination in Wet Conditions

2016-04-05
2016-01-1619
Brake disc materials are being utilised that have low noise/dust properties, but are sensitive to contamination by surface water. This drives large dust shields, making brake cooling increasingly difficult. However, brake cooling must be delivered without compromising aerodynamic drag and hence CO2 emissions targets. Given that front brake discs sit in a region of geometric, packaging and flow complexity optimization of their performance requires the analysis of thermal, aerodynamic and multi-phase flows. Some of the difficulties inherent in this task would be alleviated if the complete analysis could be performed in the same CAE environment: utilizing common models and the same solver technology. Hence the project described in this paper has sought to develop a CFD method that predicts the amount of contamination (water) that reaches the front brake discs, using a standard commercial code already exploited for both brake disc thermal and aerodynamics analysis.
Technical Paper

Application of Model Predictive Control to Cabin Climate Control Leading to Increased Electric Vehicle Range

2023-04-11
2023-01-0137
For electric vehicles (EVs), driving range is one of the major concerns for wider customer acceptance and the cabin climate system represents the most significant auxiliary load for battery consumption. Unlike internally combustion engine (ICE) vehicles, EVs cannot utilize the waste heat from an engine to heat the cabin through the heating, ventilation and air conditioning (HVAC) system. Instead, EVs use battery energy for cabin heating, this reduces the driving range. To mitigate this situation, one of the most promising solutions is to optimize the recirculation of cabin air, to minimize the energy consumed by heating the cold ambient air through the HVAC system, whilst maintaining the same level of cabin comfort. However, the development of this controller is challenging, due to the coupled, nonlinear and multi-input multi-output nature of the HVAC and thermal systems.
Technical Paper

Aspects of Numerical Modelling of Flash-Boiling Fuel Sprays

2015-09-06
2015-24-2463
Flash-boiling of sprays may occur when a superheated liquid is discharged into an ambient environment with lower pressure than its saturation pressure. Such conditions normally exist in direct-injection spark-ignition engines operating at low in-cylinder pressures and/or high fuel temperatures. The addition of novel high volatile additives/fuels may also promote flash-boiling. Fuel flashing plays a significant role in mixture formation by promoting faster breakup and higher fuel evaporation rates compared to non-flashing conditions. Therefore, fundamental understanding of the characteristics of flashing sprays is necessary for the development of more efficient mixture formation. The present computational work focuses on modelling flash-boiling of n-Pentane and iso-Octane sprays using a Lagrangian particle tracking technique.
Journal Article

Assessing the Aeroacoustic Response of a Vehicle to Transient Flow Conditions from the Perspective of a Vehicle Occupant

2014-04-01
2014-01-0591
On-road, a vehicle experiences unsteady flow conditions due to turbulence in the natural wind, moving through the unsteady wakes of other road vehicles and travelling through the stationary wakes generated by roadside obstacles. Separated flow structures in the sideglass region of a vehicle are particularly sensitive to unsteadiness in the onset flow. These regions are also areas where strong aeroacoustic effects can exist, in a region close to the passengers of a vehicle. The resulting aeroacoustic response to unsteadiness can lead to fluctuations and modulation at frequencies that a passenger is particularly sensitive towards. Results presented by this paper combine on-road measurement campaigns using instrumented vehicles in a range of different wind environments and aeroacoustic wind tunnel tests.
Journal Article

Assessment of Broadband Noise Generated by a Vehicle Sunroof at Different Flow Conditions using a Digital Wind Tunnel

2015-06-15
2015-01-2321
For the automotive industry, the quality and level of the wind noise contribution has a growing importance and therefore should be addressed as early as possible in the development process. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof broadband noise is generated by the turbulent flow developed over the roof opening. A strong shear layer and vortices impacting on the trailing edge of the sunroof are typical mechanisms related to the noise production. Sunroof designs are tested to meet broadband noise targets. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions and potentially late design changes.
Journal Article

Assessment of Light Duty Diesel After-Treatment Technology Targeting Beyond Euro 6d Emissions Levels

2017-03-28
2017-01-0978
Since previous publications, Ricardo have continued to investigate the development of advanced after-treatment technologies through model based system simulation using an integrated model based development (IMBD) approach. This paper presents the results of the evaluation of after-treatment systems and management strategies for a range of diesel passenger cars. The targets of this study are applicable to Real Driving Emissions (RDE) legislation, but now targeting emissions levels beyond Euro 6d. The work was carried out as part of the EC Horizon 2020 co-funded REWARD (Real World Advanced technologies foR Diesel engines) project. Owing to the wide variation in feed-gas properties expected over an RDE cycle, the results seen for current production system architectures such as Lean NOX traps (LNT) or actively dosed Selective Catalytic Reduction (aSCR) systems highlight the challenge to adhere to emissions limitations for RDE legislation whilst fulfilling stringent CO2 targets.
X