Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

77 Basic Investigation of Particulate Matters (O-PM)) and Polycyclic Aromatic Hydrocarbons Emitted by Two-stroke Motorcycles

2002-10-29
2002-32-1846
Characteristics of mass emission of unburned Oil-Particulate Matter and polycyclic aromatic hydrocarbons from two-stroke scooter were investigated. The tests were carried out under with and without oxidation catalyst and various air-fuel ratio ranging from 12 to 16 at 50:1 of fuel-oil mixing ratio for easy sampling. Unburned Oil-Particulate Matter and 4- to 7-rings polycyclic aromatic hydrocarbons were trapped on filter. These compounds were analyzed by high performance liquid chromatography with fluorescence detector. Mass emission of polycyclic aromatic hydrocarbons and unburned Oil-Particulate Matter tends to decrease as air-fuel ratio which increased up to stoichiometric ratio. The highest conversion ratio of unburned Oil-Particulate Matter on the oxidation catalyst was 64%. Conversion ratio of polycyclic aromatic hydrocarbons increased as rings are smaller.
Technical Paper

Analysis of Spray Feature Injected by Tailpipe Injector for Aftertreatment of Diesel Engine Emissions

2017-10-08
2017-01-2373
Diesel Particulate Filter (DPF) is a very effective aftertreatment device to limit particulate emissions from diesel engines. As the amount of soot collected in the DPF increases, the pressure loss increases. Therefore, DPF regeneration needs to be performed. Injected fuel into the exhaust line upstream of the Diesel Oxidation Catalyst (DOC), hydrocarbons are oxidized on the DOC, which increases the exhaust gas temperature at the DPF inlet. It is also necessary that the injected fuel is completely vaporized before entering the DOC, and uniformly mixed with the exhaust gases in order to make the DOC work efficiency. However, ensuring complete evaporation and an optimum mixture distribution in the exhaust line are challenging. Therefore, it is important that the fuel spray feature is grasped to perform DPF regeneration effectively. The purpose of this study is the constructing a simulation model.
Technical Paper

Basic Characteristics of Motorcycle Riding Maneuvers of Expert Riders and Ordinary Riders

2014-11-11
2014-32-0025
ISO26262 was intended only for passenger cars but can be applied to motorcycles if the Controllability (C) is subjectively evaluated by expert riders. Expert riders evaluate motorcycle performance from the viewpoint of ordinary riders. However, riding maneuvers of ordinary riders have not been confirmed by objective data. For this reason, it is important to understand the basic characteristics of riding maneuvers of both expert and ordinary riders. This study seeks to confirm the compatibility between the riding maneuvers of expert riders and those of ordinary riders. The riding maneuvers and vehicle behavior of four expert riders and 16 ordinary riders were compared using the results of a test assuming normal running.
Technical Paper

Combustion Improvement of a Premixed Charge Compression Ignition Methanol Engine using Flash Boiling Fuel Injection

2001-09-24
2001-01-3611
A premixed charge compression ignition methanol engine targeting a drastic decrease in NOx emissions and a brake specific energy consumption equivalent to that of a DI diesel engine has been developed (1). The problems of this combustion system are that the brake thermal efficiency decreases, and CO and THC emissions increase due to a deterioration of high load combustion. The purpose of this study is to improve the high load combustion of a premixed charge compression ignition methanol engine using a flash boiling fuel injection technique. The results of this study have shown that the premixed charge compression ignition methanol combustion system using a flash boiling fuel injection technique increases the brake thermal efficiency, decreases CO and THC emissions, while maintaining low NOx emissions in the high load region.
Technical Paper

Comparison of Pedestrian Subsystem Safety Tests Using Impactors and Full-Scale Dummy Tests

2002-03-04
2002-01-1021
Evaluation of car front aggressiveness in car-pedestrian accidents is typically done using sub-system tests. Three such tests have been proposed by EEVC/WG17: 1) the legform to bumper test, 2) the upper legform to bonnet leading edge test, and 3) the headform to bonnet top test. These tests were developed to evaluate performance of the car structure at car to pedestrian impact speed of 11.1 m/s (40 km/h), and each of them has its own impactor, impact conditions and injury criteria. However, it has not been determined yet to what extent the EEVC sub-system tests represent real-world pedestrian accidents. Therefore, there are two objectives of this study. First, to clarify the differences between the injury-related responses of full-scale pedestrian dummy and results of sub-system tests obtained under impact conditions simulating car-to-pedestrian accidents. Second, to propose modifications of current sub-system test methods. In the present study, the Polar (Honda R&D) dummy was used.
Journal Article

Comparison of fuel economy and exhaust emission tests of 4WD vehicles using single-axis chassis dynamometer and dual-axis chassis dynamometer

2011-08-30
2011-01-2058
The demands of application of dual-axis chassis dynamometers (4WD-CHDY) have increased recently due to the improvement of performance of 4WD-CHDY and an increase in the number of 4WD vehicles which are difficult to convert to 2WD. However, there are few evaluations of any differences between fuel economy and exhaust emission levels in the case of 2WD-CHDY with conversion from 4WD to 2WD (2WD-mode) and 4WD-CHDY without conversion to 2WD (4WD-mode). Fuel economy and exhaust emission tests of 4WD vehicle equipped with a typical 4WD mechanism were performed to investigate any differences between the case of the 2WD-mode and the 4WD-mode. In these tests, we measured ‘work at wheel’ (wheel-work) using wheel torque meters. A comparison of the 2WD-mode and the 4WD-mode reveals a difference of fuel economy (2WD-mode is 1.5% better than that of 4WD-mode) and wheel-work (2WD-mode is 3.9% less than that of 4WD-mode). However, there are almost no differences of exhaust emission levels.
Journal Article

Construction of an ISO 26262 C Class Evaluation Method for Motorcycles

2016-11-08
2016-32-0059
For applying ISO 26262 to motorcycles, controllability classification (C class evaluation) by expert riders is considered an appropriate technique. Expert riders have evaluated commercial product development for years and can appropriately conduct vehicle tests while observing safety restrictions (such as avoiding the risk of falling). Moreover, expert riders can ride safely and can stably evaluate motorcycle performance even if the test conditions are close to the limits of vehicle performance. This study aims to construct a motorcycle C class evaluation method based on an expert rider’s subjective evaluation. On the premise that expert riders can rate the C class, we improved a test procedure that used a subjective evaluation sheet as the concrete C class evaluation method for an actual hazardous event.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Technical Paper

Development and Validation of the Finite Element Model for the Human Lower Limb of Pedestrians

2000-11-01
2000-01-SC22
An impact test procedure with a legform addressing lower limb injuries in car-pedestrian accidents has been proposed by EEVC/WG17. Although a high frequency of lower limb fractures is observed in recent accident data, this test procedure assesses knee injuries with a focus on trauma to the ligamentous structures. The goal of this study is to establish a methodology to understand injury mechanisms of both ligamentous damages and bone fractures in car-pedestrian accidents. A finite element (FE) model of the human lower limb was developed using PAM-CRASH™. The commercially available H-Dummy™ lower limb model developed by Nihon ESI for a seated position was modified to represent the standing posture of pedestrians. Mechanical properties for both bony structures and knee ligaments were determined from our extensive literature survey, and were carefully implemented in the model considering their strain rate dependency in order to simulate the dynamic response of the lower limb accurately.
Technical Paper

Development of a Biofidelic Flexible Pedestrian Legform Impactor

2003-10-27
2003-22-0020
The European Enhanced Vehicle-Safety Committee (EEVC) has proposed a test procedure to assess the protection vehicles provide to the lower extremity of pedestrians during a collision. This procedure utilizes a legform impactor developed by the Transport Research Laboratory (TRL). However, the TRL Pedestrian Legform Impactor (TRL-PLI) is composed of rigid long bones (cannot simulate the bone flexibility of the human) and rather stiff knee joint. The differences lead to a lack of biofidelity of the TRL-PLI, i.e., unnaturally stiff responses are observed. This study develops a biofidelic Flexible Pedestrian Legform Impactor (Flex-PLI) that can simulate human bone flexibility and human knee joint stiffness properly. The Flex-PLI can also measure many of the injury parameters, long bone strains at multiple locations, knee ligament elongations, and the compression forces between the femoral condyles and tibial plateau in comparison to the TRL-PLI.
Technical Paper

Direct Visualization of Soot and Ash Transport in Diesel Particulate Filters during Active Regeneration Process

2019-12-19
2019-01-2287
This study employed a diesel particulate generator (DPG), with an installed engine oil injector for soot and ash accumulation in a diesel particulate filter (DPF). Ash was generated by engine oil injection into the diesel burner flame. The amount of soot accumulation per loading varied from 0.5 g/L to 8 g/L while ash accumulation amount per loading was maintained at 0.5 g/L. Initially, ash accumulation distribution in the DPF was visualized using X-ray computed tomography (CT). It was revealed that the form of ash accumulation changed depending on the amount of soot accumulation before active regeneration, i.e., a large amount of soot accumulation resulted in plug ash, whereas a small amount of soot accumulation resulted in wall ash. To clarify ash accumulation mechanisms, soot and ash transport behavior in DPF during active regeneration process was directly observed using a high-speed camera through an optically accessible D-shaped cut DPF covered with a quartz glass plate.
Technical Paper

Effects of Fuel Properties on the Performance of Advanced Diesel NOx Aftertreatment Devices

2006-10-16
2006-01-3443
In the Japan Clean Air Program II (JCAP II) Diesel WG, effects of fuel properties on the performance of two types of diesel NOx emission aftertreatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined. For a Urea-SCR system, the NOx emission reduction performance with and without an oxidation catalyst installed in front of the SCR catalyst at low exhaust gas temperature operation was compared. For an NSR catalyst system, the effect of fuel sulfur on both emissions and fuel economy during 50,000 km driving was examined. Furthermore, effects of other fuel properties such as distillation on exhaust emissions were investigated. The results show that sulfur is the influential factor for both devices. Namely, high NOx emission reduction performance of the Urea-SCR system with the oxidation catalyst at low exhaust gas temperature operation is influenced by sulfur.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

2011-04-12
2011-01-0251
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Technical Paper

Evaluation of Regulated Materials and Ultra Fine Particle Emission from Trial Production of Heavy-Duty CNG Engine

2006-10-16
2006-01-3397
A prototype CNG engine for heavy-duty trucks has been developed. The engine had sufficient output in practical use, and the green-house gas emission rate was below that of the base diesel engine. Furthermore, the NOx emission rate was reduced to 0.16 g/kWh in the JE05 mode as results of having fully adjusted air fuel ratio control. The measured emission characteristics of particles from the prototype CNG engine demonstrated that oil consumption was related to the number of particles. Moreover, when oil consumption is at an appropriate level, the accumulation mode particles are significantly reduced, and the nuclei mode particles are fewer than those of diesel-fueled engines.
Technical Paper

Feasibility Study of Urea SCR Systems on Heavy Duty Commercial Vehicles

2004-06-08
2004-01-1944
Four urea SCR systems were developed and evaluated on a C/D and on the road to investigate their potential for Japanese emission regulations in 2005 and beyond. Test results showed that NOx conversion ratios were 50 to 70% during the Japanese D13 mode cycle, and the ratios under the transient driving cycle were lower than those tested during a steady state. Unregulated emissions, such as benzene, aldehyde and benzo[a]pyrene, existed either at a trace level using the oxidation catalyst, or lower than a base diesel engine, when no oxidation catalyst was used. The health effects of particulate matter emitted from the SCR system were almost the same as those from conventional diesel engines, as evaluated by the Ames test and in vitro micronucleus test. Thermal degradation products, such as cyanuric acid and melamine, were two to four figures lower compared with the toxicological information of Safety Information Resources Inc. (SIRI).
Technical Paper

Full-Width Test and Overload Test to Evaluate Compatibility

2005-04-11
2005-01-1373
Test procedures to assess vehicle compatibility were investigated based on a series of crash tests. Structural interaction and compartment strength are significant for compatibility, and full-width tests and overload tests have been proposed to assess these key factors. Full-width rigid and deformable barrier test results were compared with respect to force distributions, structural deformation and dummy responses. In full-width deformable tests, forces from structures can be clearly shown in barrier force distributions. The average height of force (AHOF) determined in full rigid and deformable barrier tests were similar. From car-to-car tests, it was demonstrated that stiffening the compartment of small cars is an effective and direct way to improve compatibility. To evaluate the compartment strength, five overload tests were carried out. The rebound force is proposed as a compartment strength criterion.
Technical Paper

ISO 26262 C Class Evaluation Method for Motorcycles by Expert Riders Incorporating Technical Knowledge Obtained from Actual Riding Tests

2017-11-05
2017-32-0057
In applying the ISO 26262 controllability classification for motorcycles in actual riding tests, a subjective evaluation by expert riders is considered to be the appropriate approach from the viewpoint of safety. We studied the construction of an expert-rider-based C class evaluation method for motorcycles and developed some evaluation test cases reproducing various hazardous events. We determined that it was necessary to accumulate more evaluation cases for further representative scenarios and that, to avoid variations in such evaluations, a method in which different expert riders can carry out testing following a common understanding had to be devised. Considering these problems for practical application, this study aimed at establishing an actual riding test method for C class evaluation by expert riders and to develop a deeper understanding of test procedures and management.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Impact of Oil-derived Sulfur and Phosphorus on Diesel NOx Storage Reduction Catalyst - JCAP II Oil WG Report

2006-10-16
2006-01-3312
Emission regulations for diesel-powered vehicles have been gradually tightening. Installation of after-treatment devices such as diesel particulate filters (DPF), NOx storage reduction (NSR) catalysts, and so on is indispensable to satisfy rigorous limits of particulate matter (PM) and nitrogen oxides (NOx). Japan Clean Air Program II Oil Working Group (JCAPII Oil WG) has been investigating the effect of engine oil on advanced diesel after-treatment devices. First of all, we researched the impact of oil-derived ash on continuous regeneration-type diesel particulate filter (CR-DPF), and already reported that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF [1]. In this paper, impact of oil-derived sulfur and phosphorus on NSR catalyst was investigated using a 4L direct injection common-rail diesel engine with turbo-intercooler. This engine equipped with NSR catalyst meets the Japanese new short-term emission regulations.
Technical Paper

Improvement of Hydroplaning Performance Based on Water Flow around Tires

2001-03-05
2001-01-0753
The objective of this study is to improve tire hydroplaning performance by examining the arrangement of the tread grooves, based on water flow. It is important to smoothly channel the water through the tread grooves to improve performance. For this purpose, flow around the tire contact area was visualized by particle tracing. The velocity and the direction of flow in front of the contact area became clear as a vector map. This vector map indicated that the direction of the flow depends primarily on the lateral position, i.e., the distance from the tread center. Tread grooves parallel to the flow vector were designed based on this result. The visualization of the improved tire demonstrated that water flowed smoothly along the grooves. In addition, a drum test indicated increased cornering force at high speed.
X