Refine Your Search

Topic

Author

Search Results

Journal Article

Advancements and Opportunities for On-Board 700 Bar Compressed Hydrogen Tanks in the Progression Towards the Commercialization of Fuel Cell Vehicles

2017-03-28
2017-01-1183
Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
Journal Article

An Experimental Study on the Fire Response of Vehicles with Compressed Hydrogen Cylinders

2010-04-12
2010-01-0134
To investigate the events that could arise when fighting fires in vehicles with carbon fiber reinforced plastic (CFRP) hydrogen storage cylinders, we conducted experiments to examine whether a hydrogen jet diffusion flame caused by activation of the pressure relief device (PRD) can be extinguished and how spraying water influences the cylinder and PRD. The experiments clarified that the hydrogen jet flame cannot be extinguished easily with water or dry powder extinguishers and that spraying water during activation of the PRD may result in closure of the PRD, but is useful for maintaining the strength of CFRP composite cylinders for vehicles.
Technical Paper

Aqueous Corrosion of Experimental Creep-Resistant Magnesium Alloys

2006-04-03
2006-01-0257
This paper presents a comparison of aqueous corrosion rates in 5% NaCl solution for eight experimental creep-resistant magnesium alloys considered for automotive powertrain applications, as well as three reference alloys (pure magnesium, AM50B and AZ91D). The corrosion rates were measured using the techniques of titration, weight loss, hydrogen evolution, and DC polarization. The corrosion rates measured by these techniques are compared with each other as well as with those obtained with salt-spray testing using ASTM B117. The advantages and disadvantages of the various corrosion measurement techniques are discussed.
Technical Paper

Architecture and Development of a Hydrogen Sensing and Mitigation System in H2RV - Ford's Concept HEV Propelled With a Hydrogen Engine

2004-03-08
2004-01-0359
Ford's Hydrogen Hybrid Research Vehicle (H2RV) is an industry first parallel hybrid vehicle utilizing a hydrogen internal combustion engine. The goal of this drivable concept vehicle is to marry Ford's extensive hybrid powertrain experience with its hydrogen internal combustion engine technology to produce a low emission, fuel-efficient vehicle. This vehicle is seen as a possible bridge from the petroleum fueled vehicles of today to the fuel cell vehicles envisioned for tomorrow. A multi-layered hydrogen management strategy was developed for the H2RV. All aspects of the vehicle including the design of the fuel and electrical systems, placement of high-voltage subsystems, and testing, service, and storage procedures were examined to ensure the safe operation of the vehicle. The results of these reviews led to the design of the hydrogen sensing and mitigation system for the H2RV vehicle.
Technical Paper

Calculation of Hydrogen Consumption for Fuel Cell Vehicles by Exhaust Gas Formulation

2008-04-14
2008-01-0465
The hydrogen consumption of fuel cell vehicles (FCV) can be measured by the gravimetric, pressure and flow methods within a ±1% error. These are the methods acknowledged by ISO and SAE [1, 2], but require the test vehicles to be modified in order to supply hydrogen from an external, rather than the onboard tank. Consequently, technical assistance of the vehicle manufacturer is necessary for this modification, while various components in the test vehicle must be readjusted. For these reasons, a measurement method free of vehicle modification is in great demand. The present study therefore developed an “oxygen balance method” which determines the amount of hydrogen that has reacted with oxygen in the fuel cell stack by measuring the oxygen concentration in exhaust gas.
Journal Article

Combustion Behavior of Leaking Hydrogen and Effects of Ceiling Variations

2011-04-12
2011-01-0254
Hydrogen concentration during combustion in a confined space with a ceiling was investigated. The results indicated that steady-state hydrogen concentration was highest at the ceiling surface for all hydrogen flow rates. When hydrogen concentration was 10-20%, weak flame propagation occurred at the ceiling surface, with the most easily burnable spots being dented areas such as seams, pores and creases on the ceiling surface. The unstable and limited nature of flame propagation at the ceiling surface was attributed to the relationship between temperature and hydrogen concentration in a confined space.
Journal Article

Design Considerations for Hydrogen Management System on Ford Hydrogen Fueled E-450 Shuttle Bus

2009-04-20
2009-01-1422
As part of a continuous research and innovation effort, Ford Motor Company has been evaluating hydrogen as an alternative fuel option for vehicles with internal combustion engines since 1997. Ford has recently designed and built an Econoline (E-450) shuttle bus with a 6.8L Triton engine that uses gaseous hydrogen fuel. Safe practices in the production, storage, distribution, and use of hydrogen are essential for the widespread public and commercial acceptance of hydrogen vehicles. Hazards and risks inherent in the application of hydrogen fuel to internal combustion engine vehicles are explained. The development of a Hydrogen Management System (H2MS) to detect hydrogen leaks in the vehicle is discussed, including the evolution of the H2MS design from exploration and quantification of risks, to implementation and validation of a working system on a vehicle. System elements for detection, mitigation, and warning are examined.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2008-04-14
2008-01-0725
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 8 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. J2578 is currently being updated to clarify and update requirements so that it will continue to be relevant and useful in the future. An update to SAE J1766 for post-crash electrical safety was also published to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to revising SAE J2578 and J1766, the Working Group is also developing a new Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Technical Paper

Developing Safety Standards for FCVs and Hydrogen Vehicles

2006-04-03
2006-01-0326
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has published and is developing standards for FCVs and hydrogen vehicles. SAE J2578 was the first document published by the working group. The document is written from an overall vehicle perspective and deals with the integration of fuel cell and hydrogen systems in the vehicle and the management of risks associated with these systems. Since the publishing of SAE J2578, the working group has updated SAE J1766 regarding post-crash electrical safety and is developing SAE J2579 which deals with vehicular hydrogen systems.
Technical Paper

Development of Fuel Consumption Measurement Methods for Hydrogen Fuel Cell Vehicles

2006-04-03
2006-01-0217
Japan Automobile Research Institute has devised and evaluated the various fuel consumption measurement methods for fuel cell vehicles (FCVs). The examination covers the methods based on measurement of electrical current, hydrogen pressure/temperature, weight and flow rate that are expected to be the same accuracy and convenience as conventional measurement methods such as carbon balance method or fuel flow measurement method. As a result of examining the measurement accuracy for each method with a sonic nozzle used as a standard, it is found that both the pressure method and the weight method fulfill the target accuracy of ±1% and that the flow method is able to improve the accuracy by means of calibration with hydrogen. Also, as a result of applying each method to the fuel consumption test of FCVs, the relative error between the pressure method and weight method is within ±1%.
Technical Paper

Diffusion and Ignition Behavior on the Assumption of Hydrogen Leakage from a Hydrogen-Fueled Vehicle

2007-04-16
2007-01-0428
hydrogen was leaked from the underfloor at a flow rate exceeding 131 NL/min (11.8 g/min), which is the allowable fuel leakage rate at the time of a collision of compressed hydrogen vehicles in Japan, and the resulting distribution of concentration in the engine compartment and the dispersion after stoppage of the leak were investigated. Furthermore, ignition tests were also conducted and the impact on the surroundings (mainly on human bodies) was investigated to verify the safety of the allowable leakage rate. The tests clarified that if hydrogen leaks from the underfloor at a flow rate of 1000 NL/min (89.9 g/min) and is ignited in the engine compartment, people around the vehicle will not be seriously injure. Therefore, it can be said that a flow rate of 131 NL/min (11.8 g/min), the allowable fuel leakage rate at the time of a collision of compressed hydrogen vehicles in Japan, assures a sufficient level of safety.
Technical Paper

Engineering the Ford H2 IC Engine Powered E-450 Shuttle Bus

2007-10-29
2007-01-4095
As a part of a continuous research and innovation effort, Ford Motor Company has been evaluating hydrogen since 1997 as an alternative fuel option for vehicles with internal combustion engines. Hydrogen fuel is attractive in that it is the cleanest fuel. Hydrogen, when used in an internal combustion engine, produces an exhaust emission consisting mainly of water vapor, with no carbon dioxide and trace amounts of other regulated pollutants. Hydrogen can be produced from renewable sources which will help reduce the dependence on foreign oil. The implementation of the hydrogen powered IC engine is seen as a strategy to help transition from a petroleum economy to a hydrogen economy and drive development of hydrogen storage, fueling infrastructure and other hydrogen related technologies.
Technical Paper

Fire Safety Evaluation of a Vehicle Equipped with Hydrogen Fuel Cylinders: Comparison with Gasoline and CNG Vehicles

2006-04-03
2006-01-0129
In this study, we evaluated the fire safety of vehicles that use compressed hydrogen as fuel. We conducted fire tests on vehicles that used compressed hydrogen and on vehicles that used compressed natural gas and gasoline and compared temperatures around the vehicle and cylinder, internal pressure of the cylinder, irradiant heat around the vehicle, sound pressure levels when the pressure relief device (PRD) was activated, and damage to the vehicle and surrounding flammable objects. The results revealed that vehicles equipped with compressed hydrogen gas cylinders are not more dangerous than CNC or gasoline vehicles, even in the event of a vehicle fire.
Technical Paper

Ford's H2RV: An Industry First HEV Propelled with a H2 Fueled Engine - A Fuel Efficient and Clean Solution for Sustainable Mobility

2004-03-08
2004-01-0058
Ford's H2RV is a Hydrogen engine propelled Hybrid Electric concept Vehicle that was unveiled and driven at Ford's Centennial Show in June 2003. This vehicle is an industry first by an OEM that demonstrates the concept and the marriage of a HEV powertrain with a supercharged Hydrogen ICE that propels the vehicle. Just as Model T was the car of the 20th century, Model U is the vehicle for the 21st century. The powertrain utilizes compressed gaseous hydrogen as fuel, a supercharged 2.3L internal combustion engine, a 25 kW traction motor drive, the electric converterless transmission, regenerative braking, an advanced lithium ion battery, electric power assist steering, electronic throttle and Vehicle System Controller (VSC). The vehicle could deliver a projected fuel economy of 45 mpg and near zero emissions without compromise to performance.
Technical Paper

FordS Zero Emission P2000 Fuel Cell Vehicle

2000-11-01
2000-01-C046
The P2000 Fuel Cell Electric Vehicle developed by Ford Motor Company is the first full-performance, full-size passenger fuel cell vehicle in the world. This development process has resulted in a vehicle with performance that matches some of today's vehicles powered by internal combustion engines. The powertrain in Ford's P2000 FCEV lightweight aluminum vehicle consists of an Ecostar electric motor/transaxle and a fuel cell system developed with XCELLSiS-The Fuel Cell Engine Company (formerly dbb Fuel Cell Engines, Inc.). Ballard's Mark 700 series fuel cell stack is a main component in the fuel cell system. To support this new FCEV, Ford has constructed the first North American hydrogen refueling station capable of dispensing gaseous and liquid hydrogen. On-going research and development is progressing to optimize fuel cell vehicle performance and refueling techniques.
Technical Paper

Gaseous Hydrogen Station Test Apparatus: Verification of Hydrogen Dispenser Performance Utilizing Vehicle Representative Test Cylinders

2005-04-11
2005-01-0002
The paper includes the development steps used in creating a station test apparatus (STA) and a description of the apparatus design. The purpose of this device is to simulate hydrogen vehicle conditions for the verification of gaseous hydrogen refueling station dispenser performance targets and hydrogen quality. This is done at the refueling station/vehicle interface (i.e. the refueling nozzle.) In addition, the device is to serve as a means for testing and developing future advanced fueling algorithms and protocols. The device is to be outfitted with vehicle representative container cylinders and sensors located inside and outside the apparatus to monitor refueling rate, ambient and internal gas temperature, pressure and weight of fuel transferred. Data is to be recorded during refueling and graphed automatically.
Technical Paper

Hydrogen Consumption Measurement for Fuel Cell Vehicles

2004-03-08
2004-01-1008
Fuel cell vehicle fuel consumption measurement is considerably different from internal combustion engine vehicle fuel consumption measurement. Conventional Carbon Balance Method and Flow Measurement methods for gas consumption within combustion engines are not suitable for fuel cell vehicles. The small quantities of fuel consumed and the characteristics of hydrogen itself impose a challenge for the hydrogen measurement. This paper addresses fuel consumption measurement for fuel cell vehicles using various methods such as mass flow measurement, pressure/temperature/volume method, weigh method as well as other methods. The advantages and disadvantages of these methods are discussed.
Technical Paper

Hydrogen IC Engine Boosting Performance and NOx Study

2003-03-03
2003-01-0631
Hydrogen Internal Combustion Engine (H2ICE) powered vehicles have been considered a low emission, low cost, practical method to help establish a hydrogen fueling infrastructure. However, the naturally aspirated H2ICE operating lean has performance issues requiring either increased displacement or induction boost to have comparable power to the modern gasoline powered IC engine. Ford Scientific Research Laboratory has continued its H2ICE system investigation, conducting dynamometer engine-boosting experiments utilizing a 2.0 L Zetec engine (with compression ratios of 14.5:1 and 12.5:1), and a 2.3L Duratec HE-4 engine (with a compression ratio of 12.2:1) with boosted manifold air pressure up to 200 kPa. Test data of brake torque and exhaust emissions are reported at various boost pressures. Results of a detailed NOx study, conducted at University of California - Riverside, with EGR and aftertreatment for a naturally aspirated 2.0L Zetec engine are also reported.
Technical Paper

Laboratory Study of Lean NOx Trap Desulfation Strategies

2005-04-11
2005-01-1114
Desulfation characteristics of several model and fully-formulated monolithic lean NOx trap materials were studied in a laboratory flow reactor employing a chemical ionization mass spectrometer. For all samples, desulfation at elevated temperatures under reducing conditions resulted in appearance of sulfur dioxide (SO2) followed by carbonyl sulfide (COS) and hydrogen sulfide (H2S). The data appear consistent with a desulfation mechanism involving elimination of SO2 from stored sulfates under reducing conditions, followed by reaction of the SO2 with CO and H2 to produce COS and H2S, respectively. Based on these observations, several cyclic and multistage desulfation strategies were devised which greatly decreased H2S emissions while achieving relatively rapid and complete sulfur removal.
X