Refine Your Search

Topic

Author

Search Results

Technical Paper

A New High Efficiency Segmented Thermoelectric Unicouple

1999-08-02
1999-01-2567
To achieve high thermal-to-electric energy conversion efficiency, it is desirable to operate thermoelectric generator devices over large temperature gradients and also to maximize the thermoelectric performance of the materials used to build the devices. However, no single thermoelectric material is suitable for use over a very wide range of temperatures (~300-1000K). It is therefore necessary to use different materials in each temperature range where they possess optimum performance. This can be achieved in two ways: 1) multistage thermoelectric generators where each stage operates over a fixed temperature difference and is electrically insulated but thermally in contact with the other stages 2) segmented generators where the p- and n-legs are formed of different segments joined in series. The concept of integrating new thermoelectric materials developed at the Jet Propulsion Laboratory into a segmented thermoelectric unicouple has been introduced in earlier publications.
Technical Paper

A Summary of the Cassini System-Level Thermal Balance Test: Engineering Subsystems

1997-07-01
972475
The Cassini spacecraft, NASA's mission to investigate the Saturn system, has undergone a system-level thermal balance test program to permit verification of the engineering subsystem thermal designs in the simulated worst-case environments. Additionally, other objectives such as functional checkouts, collection of thermal data for analytical model adjustment, vacuum drying of propellant tanks, and flight temperature transducer verification were also completed. In the interest of cost and schedule, transient off-Sunpoint conditions were not tested. The testing demonstrated that the required system resources such as heater power and radiator area were adequate for all engineering subsystems. The only changes required from the results were related to the operation of some of the subsystems. In the instance of the thruster cluster assemblies, allowable flight temperature limits were exceeded for the assumed operational environment.
Technical Paper

A Summary of the Cassini System-Level Thermal Balance Test: Science Instruments

1997-07-01
972476
The Cassini spacecraft, NASA's mission to investigate the Saturn system, has undergone a system-level thermal balance test program to permit verification of the science instrument thermal designs in the simulated worst-case environments. Additionally, other objectives such as functional checkout, collection of thermal data for analytical model adjustment, and flight temperature transducer verification were also attained. In the interest of cost and schedule, transient off-sunpoint conditions were not tested. The test demonstrated that the required system resources such as heater power and radiator area were adequate. In the instance of the Cosmic Dust Analyzer, allowable flight temperature limits were violated, but this problem is being addressed without a significant impact to system resources or thermal design robustness. Finally, the thermal acceptability of a black Kapton “sock” was demonstrated for the magnetometer boom.
Technical Paper

A Summary of the Cassini Thermal Development Test Program

1996-07-01
961576
The Cassini spacecraft, NASA's mission to investigate the Saturn system, has undergone an extensive thermal development test program to characterize subsystem thermal control designs. In the interest of cost and schedule, not every subsystem was subjected to thermal development testing. The majority of the testing demonstrated that the required system resources such as heater power were adequate. In the instances of the stowed magnetometer boom canister, the sun sensor head assembly, the Huygens Probe receiver front-end, the thruster cluster assembly, and radar science instrument, unexpected thermal design inadequacies were uncovered, but these problems were solved without a significant impact to system resources or thermal design robustness. Additionally, a self-regulating non-electrical heater, a radiant energy transport method, and a reverse louver were successfully demonstrated.
Technical Paper

Activities of the Federal Aviation Administration’s Aviation Weather Research Program

1999-04-20
1999-01-1578
Weather is a major cause of aircraft accidents and incidents and the single largest contributor to air traffic system delays. Through improvements in the knowledge of current weather conditions and reliable forecasts, the Federal Aviation Administration (FAA) can improve aviation safety, increase system capacity, and enhance flight planning and fuel efficiency. The FAA has established an Aviation Weather Research (AWR) program to address specific requirements for weather support to aviation by providing the capability to generate more accurate and accessible weather observations, warnings, and forecasts and also by increasing the scientific understanding of atmospheric processes that spawn aviation weather hazards. The goal of AWR is to provide meteorological research that leads to the satisfaction of specific aviation weather requirements.
Technical Paper

Airport, Airspace, and NAS System Capacity Studies

1998-09-28
985553
“As we handle more operations and passengers in the air, we must make certain we have the capacity to handle increased traffic on the ground.” - Jane Garvey, FAA Administrator (4/20/98) The FAA Technical Center (Aviation System Analysis and Modeling Branch, ACT-520) has been responsive to the FAA Airport Capacity Program customers for the past 22 years, developing, testing, and applying airfield and airspace simulation models. More than 90 capacity studies have been completed with ACT-520 personnel contributing their technical expertise to the Airport Design Teams. The teams are comprised of FAA personnel, airport operators, air carriers, other airport users and aviation industry representatives at major airports throughout the US. Initial studies focused on modeling airport operations from final approach, taxi, gate operations and departure processing. Later in the program, local airspace studies were included in some airport study efforts.
Technical Paper

An FAA Analysis of Aircraft Emergency Evacuation Demonstrations

1982-02-01
821486
Average continuous flow rates for each type of aircraft exit were examined in 89 full-scale evacuation demonstrations. Passengers tend to form continuous lines at available exits when evacuating an airplane. The study concludes that, with rare exception, the passenger rates of egress from the same type exit on different make and model airplanes are not significantly different. Passenger cabin configuration, seat pitch, and aisle width have no significant bearing on the egress rates provided the aircraft certification requirements for minimum aisle width and exit accessibility are met. Injuries resulting from actual emergency evacuations and evacuation demonstrations are also examined.
Technical Paper

An Objective Look at Helicopter Automation from a Test Pilot's Point of View

1982-02-01
821449
This paper will discuss some considerations regarding man-machine interface during helicopter instrument flight. Several misconceptions have existed regarding FAA helicopter IFR certification. In response to some concerns pertaining to “excessive workload considerations,” designers have responded with several configurations. Some of these configurations have highlighted the need to educate the designer and the pilot population that the pilot must have the option to “actively participate” in the flight activity during helicopter IFR operations. “Active participation” includes the option of flying the vehicle through the normal flight controls. In addition, there has been some confusion regarding the terms “stability augmentation systems” and “autopilot.” Some individuals use the terms interchangeably. This paper will discuss the various lessons learned during FAA certification of helicopters for IFR flight from a certification test pilot's viewpoint.
Technical Paper

Canard Certification Loads — A Review of FAA Concerns

1987-10-01
871847
Since the first airplane was certified in 1927, the standard configuration has been with the main lifting surface or surfaces forward of the stabilizing surface. Although some of the advantages of the canard configuration were recognized quite early - by the Wright Brothers, for example - canard surfaces have been used to date only as additional control surfaces on some military airplanes, and on some amateur built airplanes. As a result, the Airworthiness Regulations of Reference 1 address only tail aft configurations. When FAA was first approached regarding certification of a canard configured small airplane, an FAA/Industry Empennage Loads Working Group was formed to develop technical proposals for the necessary rule changes and policy. The concerns addressed by this working group are discussed in the following sections.
Technical Paper

Certification Issues Regarding Advanced Technology Control Systems in Civil Rotorcraft

1987-10-01
871850
Microprocessor technology is allowing functions in aircraft to be implemented to a greater degree by digital process control than by conventional mechanical or electromechanical means. A review of this technology indicates a need for updated certification criteria. A high level of commitment to the technology such as fly-by-wire is completely beyond the scope of existing certification criteria. This paper emphasizes the areas of software validation levels, increased concern with basic power system qualification, and increased environmental concerns for electromagnetic interference and lightning.
Technical Paper

Certification Issues for a Tilt-Rotor Aircraft

1987-10-01
871852
Powered-lift aircraft, such as the V-22 tilt-rotor, are likely to spin-off a civil version. The present FAA airworthiness certification standards are not considered to be adequate for these unique aircraft. The FAA has drafted certification criteria and held a public conference to review the draft and identify significant technical certification issues that require further effort to establish correct standards for powered-lift aircraft. Some of those issues are discussed.
Technical Paper

Civil Certification of Avionics Modifications in Military Transport Category Aircraft

1997-10-01
975644
Recent changes in DoD procurement directives have encouraged the purchase of civilian products for use in certain military applications. One such application is the upgrade of avionics suites with the Global Positioning System (GPS) in military air transport aircraft to meet joint civil-military operational requirements. This paper reviews the Commercial Off-the-Shelf (COTS) concept and the proper use of TSOs, ACs, and FARs in both the design and integration process.
Technical Paper

Combined Loads, Vibration, and Modal Testing of the QuikSCAT Spacecraft

1999-10-19
1999-01-5551
Combining the quasi-static loads, workmanship verification, and model validation tests of aerospace hardware into a single vibration test sequence can considerably reduce schedule and cost. The enabling factor in the implementation of the combined dynamic testing approach is the measurement of the dynamic forces exerted on the test item by the shaker. The dynamic testing of the QuikSCAT spacecraft is discussed as an example of a successful combined loads, workmanship, and model validation test program.
Journal Article

Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

2012-10-22
2012-01-2148
NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.
Technical Paper

Determining a Safety Baseline for Unmanned Aircraft Systems

2011-10-18
2011-01-2686
Unmanned Aircraft Systems (UAS) emerge as a viable, operational technology for potential civil and commercial applications in the National Airspace System (NAS). Although this new type of technology presents great potential, it also introduces a need for a thorough inquiry into its safety impact on the NAS. This study presents a systems-level approach to analyze the safety impact of introducing a new technology, such as UAS, into the NAS. Utilizing Safety Management Systems (SMS) principles and the existing regulatory structure, this paper outlines a methodology to determine a mandatory safety baseline for a specific area of interest regarding a new aviation technology, such as UAS Sense and Avoid. The proposed methodology is then employed to determine a baseline set of hazards and causal factors for the UAS Sense and Avoid problem domain and associated regulatory risk controls.
Technical Paper

Direct Acoustic Test of Quikscat Spacecraft

1999-10-19
1999-01-5550
A novel direct acoustic test was performed on the Quik- SCAT spacecraft at Ball Aerospace Technology Corporation (BATC) in Boulder, Colorado, in October 1998. The QuikSCAT spacecraft was designed and built by BATC in an accelerated, one-year, program managed by the NASA Goddard Space Flight Center. The spacecraft carries the SeaWinds scatterometer developed by the Jet Propulsion Laboratory to measure the near-surface wind speed over Earth’s oceans. Instead of conducting the acoustic test with the spacecraft in a reverberant room, as is the usual practice, the test was conducted with the spacecraft mounted on a shaker slip-table in a nearly anechoic, vibration test cell. The spacecraft was surrounded with a three-meter high ring of large, electro-dynamic speakers, spaced approximately 1.3 meters away from the two-meter diameter, 900 kg. spacecraft. The thirty-one speaker cabinets were driven with 40,000 rms watts of audio amplifier power.
Technical Paper

FAA Certification Criteria for Critical and Essential Digital Systems

1981-10-01
811060
The advent of digital electronics for use in civil aircraft, particularly the new technology represented by central processor and microprocessor controlled systems, represents a major challenge to the aviation industry. The Federal Aviation Administration (FAA) is charged with the responsibility of evaluating these systems to determine if they can be used safely. The complexity of these systems as compared to their analog counterparts in use today makes their evaluation difficult. This paper outlines the major concerns of the FAA with the use of software controlled digital systems for airborne applications. The methods which can be used by members of the aviation industry to obtain FAA certification of these systems are also discussed. The proposal of Special Committee SC-145 of the Radio Technical Commission for Aeronautics (RTCA) form the basis of the design methodology which is described for the successful development of the computer programs (software) to be used by these systems.
Technical Paper

FAA's Trend Analysis Data System

1982-02-01
821447
The Federal Aviation Administration is charged with the promotion of aviation safety. It is made up of three levels of administration within which are the functional organizations that manage the FAA programs and services. The Flight Standards service, which develops and enforces all regulations affecting aircraft and airmen, is the functional organization directly responsible for promoting aviation safety. This paper describes the Flight Standards aviation safety program.
Technical Paper

Failure of Aircraft Structural Joints Under Impulse Loading

1996-10-01
965584
Numerical simulations indicate that blast loading on aircraft structural joints can impart loading rates in excess of 10 Mlb/sec (ten million pounds per second, Reference 1). Experimental evidence, on the other hand, suggests that mechanical joint failure loads are highly loading rate dependent; for example, the failure load for a dynamically loaded tension joint can double from its static value. This paper discusses the progress and to-date findings of research on the assessment of strength failure of aircraft structural joints subjected to loading rates expected from an internal explosive detonation, and several associated experimental procedures to generate such dynamic loading. This work is conducted at MDC and at the University of Dayton Research Institute (UDRI) in support of the FAA Aircraft Hardening Program.
Technical Paper

Flammability of Automotive Plastics

2006-04-03
2006-01-1010
This paper compares the flammability of plastic automotive components to that of commodity, engineering, and specialty plastics as well as those used in commercial aircraft cabins with regard to performance in microscale combustion calorimetry tests. Not surprisingly, automotive components used in engine and passenger compartments are as flammable and ignitable as the commodity and engineering plastics of which they are made and much more flammable than those used in the interiors of aircraft.
X