Refine Your Search

Topic

Author

Search Results

Technical Paper

Advanced Electric and Hybrid Vehicle Subsystem Assessment

1983-02-01
830349
Various candidates for nonpetroleum electric and hybrid vehicle (EHV) subsystems have been evaluated as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The subsystems include battery and power-peaking energy storage, heat engine and fuel cell energy conversion devices, motor/controller subsystems, transmissions, and vehicle subsystem (structure and body) technologies. The primary objective of this effort, was to project the mature capabilities of the various components in the 1990’s for application in the systems evaluations in the next phase of this activity. This paper presents the basic characteristics of the subsystems and compares their capabilities with projected AV subsystem requirements.
Technical Paper

Chemical Sensor Testing for Space Life Support Chemical Processing: Part I. Moisture Sensors

1994-06-01
941263
In support of the National Aeronautics and Space Administration(NASA), a laboratory has been established at the Jet Propulsion Laboratory (JPL) to evaluate the characteristics of chemical sensors which are candidates for use in a controlled chemical processing life support system. Such a facility is required for characterizing those sensors under development as well as those commercially available but whose functional properties are typically based upon operating in industrial environments that will not be completely synonomous with space operations. Space environments, such as an orbiting station or lunar base, will generally have different sensor requirements than terrestrial applications with respect to size, multifunctionality, sensitivity, reliability, temperature, ruggedness, mass, consumables, life, and power requirements. Both commercially available and developmental moisture sensors have been evaluated.
Technical Paper

Design and Flight Qualification of a Paraffin-Actuated Heat Switch for Mars Surface Applications

2002-07-15
2002-01-2275
The Mars Exploration Rover (MER) flight system uses mechanical, paraffin-actuated heat switches as part of its secondary battery thermal control system. This paper describes the design, flight qualification, and performance of the heat switch. Although based on previous designs by Starsys Research Corporation1,2, the MER mission requirements have necessitated new design features and an extensive qualification program. The design utilizes the work created by the expansion of a paraffin wax by bringing into contact two aluminum surfaces, thereby forming a heat conduction path. As the paraffin freezes and contracts, compression springs separate the surfaces to remove the conduction path. The flight qualification program involved extensive thermal performance, structural, and life testing.
Technical Paper

Development Testing of a Paraffin-Actuated Heat Switch for Mars Rover Applications

2002-07-15
2002-01-2273
A paraffin-actuated heat switch has been developed for thermal control of the batteries used on the 2003 Mars Exploration Rovers. The heat switch is used to reject heat from the rover battery to a radiator. This paper describes the development test program designed, in part, to measure the thermal conductance of the heat switch in an 8 Torr CO2 environment over the expected operating temperature range of the battery. The switch has a closed conductance of about 0.6 W/°C and an open conductance of 0.019 W/°C. The test program also included measuring the battery temperature profile over a hot case and a cold case Mars diurnal cycle. The test results confirm that the battery will remain well within the upper and lower allowable flight temperatures in both cases.
Journal Article

Development of the Orbiting Carbon Observatory Instrument Thermal Control System

2008-06-29
2008-01-2065
The Orbiting Carbon Observatory (OCO) will carry a single science instrument scheduled for launch on an Orbital Sciences Corporation LeoStar-2 architecture spacecraft bus in December 2008. The science objective of the OCO instrument is to collect spaced-based measurements of atmospheric CO2 with the precision, resolution, and coverage needed to identify CO2 sources and sinks and quantify their seasonal variability. The instrument will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. These measurements will improve our ability to forecast CO2 induced climate change. The instrument consists of three bore-sighted, high resolution grating spectrometers sharing a common telescope with similar optics and electronics.
Technical Paper

Fabrication of laterally coupled InGaAsSb-GaSb-AlGaAsSb DFB laser structures

2000-07-10
2000-01-2305
The development of tunable diode laser systems in the 2 - 5 μm spectral region will have numerous applications for trace gas detection. To date, the development of such systems has been hampered by the difficulties of epitaxial growth, and device processing in the case of the Sb-based materials system. One of the compounding factors in this materials system is the use of aluminum containing compounds in the laser diode cladding layers. This makes the regrowth steps used in traditional lasers very difficult. As an alternative approach we are developing laterally coupled antimonide based lasers structures that do not require the regrowth steps. In this paper, the materials growth, device processing and development of the necessary drive electronics for an antimony based tunable diode laser system are discussed.
Journal Article

Ground Validation of the Third Generation JPL Electronic Nose

2008-06-29
2008-01-2044
The Third Generation ENose is an air quality monitor designed to operate in the environment of the US Lab on the International Space Station. It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 °C, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The abilities of the device to detect ten analytes, to reject confounders as “unknown” and to deconvolute mixtures of two analytes under varying environmental conditions has been tested extensively in the laboratory. Results of ground testing showed an overall success rate for detection, identification and quantification of analytes of 87% under nominal temperature and humidity conditions and 83% over all conditions.
Technical Paper

Implications of the VBNC State of B. cepacia and S. maltophilia on Bioreduction and Microbial Monitoring of ISS Potable Waters

2005-07-11
2005-01-2933
Certain Eubacteria enter a viable but nonculturable (VBNC) state upon encountering unfavorable environmental conditions. VBNC cells do not divide on conventional media yet remain viable and in some cases retain virulence. Here, we describe the VBNC state of two opportunistic pathogens previously isolated from ISS potable waters, Burkholderia cepacia and Stenotrophomonas maltophilia. Artificially inoculated microcosms were exposed to the biocidal agents copper (CuSO4) and iodine (I2) in an attempt to induce nonculturablility. Viability was assessed via fluorescent microscopy (direct viable count assay coupled with BacLight™ staining) and metabolic activity was monitored by quantifying both intracellular ATP and transcribed rRNA (reverse transcriptase quantitative PCR). Culturablility was lost in both B. cepacia and S. maltophilia within two days of exposure to copper or high concentrations of iodine (6 or 8 ppm).
Technical Paper

Investigation of Transient Temperature Oscillations of a Propylene Loop Heat Pipe

2001-07-09
2001-01-2235
A technology demonstration propylene Loop Heat Pipe (LHP) has been tested extensively in support of the implementation of this two-phase thermal control technology on NASA’s Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) instrument. This cryogenic instrument is being developed at the Jet Propulsion Laboratory (JPL) for NASA. This paper reports on the transient characterization testing results showing low frequency temperature oscillations. Steady state performance and model correlation results can be found elsewhere. Results for transient startup and shutdown are also reported elsewhere. In space applications, when LHPs are used for thermal control, the power dissipation components are typically of large mass and may operate over a wide range of power dissipations; there is a concern that the LHP evaporator may see temperature oscillations at low powers and over some temperature range.
Technical Paper

Lifetimes of AMTEC Electrodes: Rhodium-Tungsten and Titanium Nitride

1999-08-02
1999-01-2704
The lifetime of an AMTEC electrode is predicted from the rate of grain growth in the electrode. The rate of growth depends on several physical characteristics of each material, including the rate of diffusion of the material on itself. Grain growth rates for rhodium-tungsten and titanium nitride electrodes have been determined, and have been used to predict operating lifetimes of AMTEC electrodes. For lifetimes of 10 years or more, RhxW electrodes may be used at any operating temperature supportable by the electrolyte. TiN electrodes may be used in AMTEC cells only at operating temperatures under 1150 K.
Technical Paper

Margin Determination in the Design and Development of a Thermal Control System

2004-07-19
2004-01-2416
A method for determining margins in conceptual-level design via probabilistic methods is described. The goal of this research is to develop a rigorous foundation for determining design margins in complex multidisciplinary systems. As an example application, the investigated method is applied to conceptual-level design of the Mars Exploration Rover (MER) cruise stage thermal control system. The method begins with identifying a set of tradable system-level parameters. Models that determine each of these tradable parameters are then created. The variables of the design are classified and assigned appropriate probability density functions. To characterize the resulting system, a Monte Carlo simulation is used. Probabilistic methods can then be used to represent uncertainties in the relevant models. Lastly, results of this simulation are combined with the risk tolerance of thermal engineers to guide in the determination of margin levels.
Technical Paper

Mars Rover 2003 Battery Charger

1999-08-02
1999-01-2447
The Jet Propulsion Laboratory Mars Exploration Program Office is currently planning a series of exciting missions to the Red Planet. During each launch opportunity, the missions to Mars will include a Rover mission. During the earlier Rover missions to Mars such as the Mars Pathfinder mission carrying the Sojourner Rover in 1997, the main rover power source was a solar array. The power subsystem of the Sojourner Rover included a solar panel for power during the day, a non-rechargeable lithium battery for power during the night, and a power electronics board for power conditioning and distribution. Starting with the year 2003 the rover missions to Mars will incorporate a rechargeable energy storage device rather than a non-rechargeable power source. Included in the power electronics board, will be a battery controller/charger. The battery controller/charger will be able to monitor and control three parallel 4-cell battery strings.
Technical Paper

Mars Science Laboratory Thermal Control Architecture

2005-07-11
2005-01-2828
The Mars Science Laboratory (MSL1) mission to land a large rover on Mars is being planned for Launch in 2009. As currently conceived, the rover would use a Multi-mission Radioisotope Thermoelectric Generator (MMRTG) to generate about 110 W of electrical power for use in the rover and the science payload. Usage of an MMRTG allows for a large amount of nearly constant electrical power to be generated day and night for all seasons (year around) and latitudes. This offers a large advantage over solar arrays. The MMRTG by its nature dissipates about 2000 W of waste heat. The basic architecture of the thermal system utilizes this waste heat on the surface of Mars to maintain the rover's temperatures within their limits under all conditions. In addition, during cruise, this waste heat needs to be dissipated safely to protect sensitive components in the spacecraft and the rover.
Technical Paper

Mechanically Pumped Fluid Loop Technologies for Thermal Control of Future Mars Rovers

2006-07-17
2006-01-2035
Future planetary science missions planned for Mars are expected to be more complex and thermally challenging than any of the previous missions. For future rovers, the operational parameters such as landing site latitudes, mission life, distance traversed, and rover thermal energy to be managed will be significantly higher (two to five times) than the previous missions. It is a very challenging problem to provide an effective thermal control for the future rovers using traditional passive thermal control technologies. Recent investigations at the Jet Propulsion Laboratory (JPL) have shown that mechanical pump based fluid loops provide a robust and effective thermal control system needed for these future rovers. Mechanical pump based fluid loop (MPFL) technologies are currently being developed at JPL for use on such rovers. These fluid loops are planned for use during spacecraft cruise from earth to Mars and also on the Martian surface operations.
Technical Paper

Model for Grain Growth in AMTEC Electrodes

1999-08-02
1999-01-2703
The power produced by an AMTEC is dependent on the porosity of the electrode layers deposited on the surface of the BASE tubes. The elevated temperatures at which these power generators operate result in a slow growth or coalescence of the grains that comprise the electrode layers thereby reducing porosity and effective surface area. The lifetime of AMTEC electrodes is therefore related to the rate of grain growth of the electrode material. A preliminary model has been developed to determine the rate of grain growth over the operational lifetime of an AMTEC. This model examines the conditions for continuous growth as a function of the relative sizes, boundary and activation energies and mobilities of the grains. An assumption of strain-free growth has been made in determining the factors for normal growth. Experimental measurements for titanium nitride alloy electrodes are compared with this model. Predictions are made for performance lifetimes out to 10 years.
Technical Paper

Monitoring Pre-Combustion Event Markers by Heating Electrical Wires

2009-07-12
2009-01-2543
Simultaneous measurements were made for particle releases and off-gassing products produced by heating electrical wires. The wire samples in these experiments were heated to selected temperatures in a heating chamber and responses to vapor releases were recorded by the JPL Electronic Nose (ENose) and an Industrial Scientific ITX gas-monitor; particles released were detected by a TSI P-Trak particle counter. The temperature range considered for the experiment is room temperature (24−26°C) to 500 °C. The results were analyzed by overlapping responses from the ENose, ITX gas sensors and P-Trak, to understand the events (particle release/off-gassing) and sequence of events as a function of temperature and to determine qualitatively whether ENose may be used to detect pre-combustion event markers.
Journal Article

Off-Gassing and Particle Release by Heated Polymeric Materials

2008-06-29
2008-01-2090
Polymers are one of the major constituents in electrical components. A study investigating pre-combustion off-gassing and particle release by polymeric materials over a range of temperatures can provide an understanding of thermal degradation prior to failure which may result in a fire hazard. In this work, we report simultaneous measurements of pre-combustion vapor and particle release by heated polymeric materials. The polymer materials considered for the current study are silicone and Kapton. The polymer samples were heated over the range 20 to 400°C. Response to vapor releases were recorded using the JPL Electronic Nose (ENose) and Industrial Scientific's ITX gas monitor configured to detect hydrogen chloride (HCl), carbon monoxide (CO) and hydrogen cyanide (HCN). Particle release was monitored using a TSI P-TRAK particle counter.
Technical Paper

On-Orbit Performance of the TES Loop Heat Pipe Heat Rejection System

2008-06-29
2008-01-2000
Launched on NASA's Aura spacecraft on July 15, 2004, JPL's Tropospheric Emission Spectrometer (TES) has been operating successfully for over three years in space. TES is an infrared high resolution, imaging fourier transform spectrometer with spectral coverage of 3.3 to 15.4 μm to measure and profile essentially all infrared-active molecules present in the Earth's lower atmosphere. It measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. The Aura spacecraft was successfully placed in a sun-synchronous near-circular polar orbit with a mean altitude of 705 km and 98.9 minute orbit period. The observatory is designed for a nominal 5 year mission lifetime. The instrument thermal design features include four temperature zones needed for efficient cryogenic staging to provide cooling at 65 K, 180 K, 230 K and 300 K.
Journal Article

On-Orbit Thermal Performance of the TES Instrument-Three Years in Space

2008-06-29
2008-01-2118
The Tropospheric Emission Spectrometer (TES), launched on NASA's Earth Observing System Aura spacecraft on July 15, 2004 has successfully completed over three years in space and has captured a number of important lessons. The instrument primary science objective is the investigation and quantification of global climate change. TES measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. It is an infrared (IR) high resolution, imaging Fourier Transform Spectrometer (FTS) with a 3.3 to 15.4 μm spectral coverage required for space-based measurements to profile essentially all infrared-active molecules present in the Earth's lower atmosphere. The nominal on-orbit mission lifetime is 5 years. The Aura spacecraft flies in a sun-synchronous near-circular polar orbit with 1:38 pm ascending node.
Technical Paper

Operation of Third Generation JPL Electronic Nose on the International Space Station

2009-07-12
2009-01-2522
The Third Generation ENose is an air quality monitor designed to operate in the environment of the US Lab on the International Space Station (ISS). It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 – 30 °C, relative humidity from 25 – 75% and pressure from 530 to 760 torr. This device was installed and activated on ISS on Dec. 9, 2008 and has been operating continuously since activation. Data are downlinked and analyzed weekly. Results of analysis of ENose monitoring data show the short term presence of low concentration of alcohols, octafluoropropane and formaldehyde as well as frequent short term unknown events.
X