Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Novel Vision-Based Framework for Real-Time Lane Detection and Tracking

Lane detection is one of the most important part in ADAS because various modules (i.e., LKAS, LDWS, etc.) need robust and precise lane position for ego vehicle and traffic participants localization to plan an optimal routine or make proper driving decisions. While most of the lane detection approaches heavily depend on tedious pre-processing and great amount of assumptions to get reasonable result, the robustness and efficiency are deteriorated. To address this problem, a novel framework is proposed in this paper to realize robust and real-time lane detection. This framework consists of two branches, where canny edge detection and Progressive Probabilistic Hough Transform (PPHT) are introduced in the first branch for efficient detection.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Journal Article

GPS Modeling for Vehicle Intelligent Driving Simulation

In recent years, intelligent vehicles have become one of the major research topics in vehicle engineering and have created a new opportunity for the automotive industry. Simulation and real experiment are both essential to the development of intelligent vehicle technologies. Vehicle positioning systems, such as global positioning system (GPS), play an important role in intelligent vehicle development. The GPS model plays a major part in the development of intelligent vehicle simulation systems. Primarily focusing on application requirements of intelligent vehicle simulation platforms for GPS sensor modeling, considering the major factors affecting positioning accuracy in vehicle driving environments, this article establishes a new GPS model and algorithm based on the physical and functional characteristics of GPS. As the basis of this model system, a precise ephemeris model is established to obtain the coordinates of GPS satellites at any given time.
Technical Paper

Lidar Inertial Odometry and Mapping for Autonomous Vehicle in GPS-Denied Parking Lot

High-precision and real-time ego-motion estimation is vital for autonomous vehicle. There is a lot GPS-denied maneuver such as underground parking lot in urban areas. Therefore, the localization system relying solely on GPS cannot meets the requirements. Recently, lidar odometry and visual odometry have been introduced into localization systems to overcome the problem of missing GPS signals. Compared with visual odometry, lidar odometry is not susceptible to light, which is widely applied in weak-light environments. Besides, the autonomous parking is highly dependent on the geometric information around the vehicle, which makes building map of surroundings essential for autonomous vehicle. We propose a lidar inertial odometry and mapping. By sensor fusion, we compensate for the drawback of applying a single sensor, allowing the system to provide a more accurate estimate.
Technical Paper

Objective Evaluation Model of Automatic Transmission Shift Quality Based on Multi-Hierarchical Grey Relational Analysis

Improvement of shift quality evaluation has become more prevalent over the past few years in the development of automatic transmission electronic control system. For the problems of the subjective shift quality evaluation that subjectivity is too strong, the standard cannot be unified and the definition of the objective evaluation index is not clear at present, this paper studies on the methods of objective evaluation of shift quality based on the multi-hierarchical grey relational analysis. Firstly, objective evaluation index system is constructed based on physical quantities, such as the engine speed, the longitudinal acceleration of the vehicle and so on, which broadens the scope of the traditional objective evaluation index further.
Technical Paper

Recognition and Classification of Vehicle Target Using the Vehicle-Mounted Velodyne LIDAR

This paper describes a novel recognition and classification method of vehicle targets in urban road based on a vehicle-mounted Velodyne HDL64E light detection and ranging (LIDAR) system. The autonomous vehicle will choose different driving strategy according to the surrounding traffic environments to guarantee that the driving is safe, stable and efficient. It is helpful for controller to provide the efficient stagey to know the exact type of vehicle around. So this method concentrates on reorganization and classification the type of vehicle targets so that the controller can provide a safe and efficient driving strategy for autonomous ground vehicles. The approach is targeted at high-speed ground vehicle, so real-time performance of the method plays a critical role. In order to improve the real-time performance, some methods of data preprocessing should be taken to simplify the large-size long-range 3D point clouds.