Refine Your Search

Topic

Search Results

Technical Paper

A Fuzzy On-Line Self-Tuning Control Algorithm for Vehicle Adaptive Cruise Control System with the Simulation of Driver Behavior

2009-04-20
2009-01-1481
Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
Technical Paper

A Hybrid Classification of Driver’s Style and Skill Using Fully-Connected Deep Neural Networks

2021-02-03
2020-01-5107
Driving style and skill classification are of great significance in human-oriented advanced driver-assistance system (ADAS) development. In this paper, we propose Fully-Connected Deep Neural Networks (FC-DNN) to classify drivers’ styles and skills with naturalistic driving data. Followed by the data collection and pre-processing, FC-DNN with a series of deep learning optimization algorithms are applied. In the experimental part, the proposed model is validated and compared with other commonly used supervised learning methods including the k-nearest neighbors (KNN), support vector machine (SVM), decision tree (DT), random forest (RF), and multilayer perceptron (MLP). The results show that the proposed model has a higher Macro F1 score than other methods. In addition, we discussed the effect of different time window sizes on experimental results. The results show that the driving information of 1s can improve the final evaluation score of the model.
Technical Paper

A Maneuver-Based Threat Assessment Strategy for Collision Avoidance

2018-04-03
2018-01-0598
Advanced driver assistance systems (ADAS) are being developed for more and more complicated application scenarios, which often require more predictive strategies with better understanding of driving environment. Taking traffic vehicles’ maneuvers into account can greatly expand the beforehand time span for danger awareness. This paper presents a maneuver-based strategy to vehicle collision threat assessment. First, a maneuver-based trajectory prediction model (MTPM) is built, in which near-future trajectories of ego vehicle and traffic vehicles are estimated with the combination of vehicle’s maneuvers and kinematic models that correspond to every maneuver. The most probable maneuvers of ego vehicle and each traffic vehicles are modeled and inferred via Hidden Markov Models with mixture of Gaussians outputs (GMHMM). Based on the inferred maneuvers, trajectory sets consisting of vehicles’ position and motion states are predicted by kinematic models.
Journal Article

A Novel Method of Radar Modeling for Vehicle Intelligence

2016-09-14
2016-01-1892
The conventional radar modeling methods for automotive applications were either function-based or physics-based. The former approach was mainly abstracted as a solution of the intersection between geometric representations of radar beam and targets, while the latter one took radar detection mechanism into consideration by means of “ray tracing”. Although they each has its unique advantages, they were often unrealistic or time-consuming to meet actual simulation requirements. This paper presents a combined geometric and physical modeling method on millimeter-wave radar systems for Frequency Modulated Continuous Wave (FMCW) modulation format under a 3D simulation environment. With the geometric approach, a link between the virtual radar and 3D environment is established. With the physical approach, on the other hand, the ideal target detection and measurement are contaminated with noise and clutters aimed to produce the signals as close to the real ones as possible.
Technical Paper

A Novel Vision-Based Framework for Real-Time Lane Detection and Tracking

2019-04-02
2019-01-0690
Lane detection is one of the most important part in ADAS because various modules (i.e., LKAS, LDWS, etc.) need robust and precise lane position for ego vehicle and traffic participants localization to plan an optimal routine or make proper driving decisions. While most of the lane detection approaches heavily depend on tedious pre-processing and great amount of assumptions to get reasonable result, the robustness and efficiency are deteriorated. To address this problem, a novel framework is proposed in this paper to realize robust and real-time lane detection. This framework consists of two branches, where canny edge detection and Progressive Probabilistic Hough Transform (PPHT) are introduced in the first branch for efficient detection.
Technical Paper

A Path Planning and Model Predictive Control for Automatic Parking System

2020-04-14
2020-01-0121
With the increasing number of urban cars, parking has become the primary problem that people face in daily life. Therefore, many scholars have studied the automatic parking system. In the existing research, most of the path planning methods use the combined path of arc and straight line. In this method, the path curvature is not continuous, which indirectly leads to the low accuracy of path tracking. The parking path designed using the fifth-order polynomial is continuous, but its curvature is too large to meet the steering constraints in some cases. In this paper, a continuous-curvature parking path is proposed. The parking path tracker based on Model Predictive Control (MPC) algorithm is designed under the constraints of the control accuracy and vehicle steering. Firstly, in order to make the curvature of the parking path continuous, this paper superimposes the fifth-order polynomial with the sigmoid function, and the curve obtained has the continuous and relatively small curvature.
Journal Article

Accurate Pressure Control Based on Driver Braking Intention Identification for a Novel Integrated Braking System

2021-04-06
2021-01-0100
With the development of intelligent and electric vehicles, higher requirements are put forward for the active braking and regenerative braking ability of the braking system. The traditional braking system equipped with vacuum booster has difficulty meeting the demand, therefore it has gradually been replaced by the integrated braking system. In this paper, a novel Integrated Braking System (IBS) is presented, which mainly contains a pedal feel simulator, a permanent magnet synchronous motor (PMSM), a series of transmission mechanisms, and the hydraulic control unit. As an integrative system of mechanics-electronics-hydraulics, the IBS has complex nonlinear characteristics, which challenge the accurate pressure control. Furthermore, it is a completely decoupled braking system, the pedal force doesn’t participate in pressure-building, so it is necessary to precisely identify driver’s braking intention.
Technical Paper

Accurate Pressure Control Strategy of Electronic Stability Program Based on the Building Characteristics of High-Speed Switching Valve

2019-04-02
2019-01-1107
The Electronic Stability Program (ESP), as a key actuator of traditional automobile braking system, plays an important role in the development of intelligent vehicles by accurately controlling the pressure of wheels. However, the ESP is a highly nonlinear controlled object due to the changing of the working temperature, humidity, and hydraulic load. In this paper, an accurate pressure control strategy of single wheel during active braking of ESP is proposed, which doesn’t rely on the specific parameters of the hydraulic system and ESP. First, the structure and working principle of ESP have been introduced. Then, we discuss the possibility of Pulse Width Modulation (PWM) control based on the mathematical model of the high-speed switching valve. Subsequently, the pressure building characteristics of the inlet and outlet valves are analyzed by the hardware in the Loop (HiL) experimental platform.
Technical Paper

An Adaptive PID Controller with Neural Network Self-Tuning for Vehicle Lane Keeping System

2009-04-20
2009-01-1482
Vehicle lane keeping system is becoming a new research focus of drive assistant system except adaptive cruise control system. As we all known, vehicle lateral dynamics show strong nonlinear and time-varying with the variety of longitudinal velocity, especially tire’s mechanics characteristic will change from linear characteristic under low speed to strong nonlinear under high speed. For this reason, the traditional PID controller and even self-tuning PID controller, which need to know a precise vehicle lateral dynamics model to adjust the control parameter, are too difficult to get enough accuracy and the ideal control quality. Based on neural network’s ability of self-learning, adaptive and approximate to any nonlinear function, an adaptive PID control algorithm with BP neural network self-tuning online was proposed for vehicle lane keeping.
Journal Article

An Indirect TPMS Algorithm Based on Tire Resonance Frequency Estimated by AR Model

2016-04-05
2016-01-0459
Proper tire pressure is very important for multiple driving performance of a car, and it is necessary to monitor and warn the abnormal tire pressure online. Indirect Tire Pressure Monitoring System (TPMS) monitors the tire pressure based on the wheel speed signals of Anti-lock Braking System (ABS). In this paper, an indirect TPMS method is proposed to estimate the tire pressure according to its resonance frequency of circumferential vibration. Firstly, the errors of ABS wheel speed sensor system caused by the machining tolerance of the tooth ring are estimated based on the measured wheel speed using Recursive Least Squares (RLS) algorithm and the measuring errors are eliminated from the wheel speed signal. Then, the data segments with drive train torsional vibration are found out and eliminated by the methods of correlation analysis.
Technical Paper

Analysis and Design of Personalized Adaptive Cruise System

2020-05-19
2020-01-5053
The global adaptive cruise control (ACC) market is expected to witness a compound annual growth rate of 18.3% during the forecast period to reach $15,290 million by 2023 [1]. The driver uses an ACC system to reduce the driving burden and improve safety. The ACC mode in a car is fixed, but different drivers have different driving habits. This paper will verify this through experiments and divide drivers into three categories according to the drivers’ driving habits. Therefore, we will design a personalized ACC, wherein an ACC system, under the same working conditions, can have different acceleration and deceleration to meet the needs of different types of drivers. Therefore, this paper collects driver data, analyzes model data and identifies its parameters, and finally verifies the different effects of personalized ACC through simulation.
Technical Paper

Arrangement and Control Method of Cooperative Vehicle Platoon

2021-04-06
2021-01-0113
With the development of cellular communication technology and for the sake of reducing drag resistance, the multi-lane platoon technology will be more prosperous in the future. In this article, the cooperative vehicle platoon method on the public road is represented. The method’s architecture is mainly composed of the following parts: decision-making, path planning and control command generation. The decision-making uses the finite state machine to make decision and judgment on the cooperative lane change of vehicles, and starts to execute the lane change step when the lane change requirements are met. In terms of path planning, with the goal of ensuring comfort, the continuity of the vehicle state and no collision between vehicles, a fifth-order polynomial is used to fit every vehicle trajectory. In terms of control command generation module, a model predictive control algorithm is used to solve the multi-vehicle centralized optimization control problem.
Technical Paper

Chassis Tuning Study of a Commercial Vehicle

2015-03-10
2015-01-0016
This paper presents the study of chassis tuning of a commercial vehicle, which has a rear suspension with dual stage leaf spring assembly and a front suspension with double wishbone torsion bar. To balance the handling and ride performance of the vehicle, it is necessary to tune the key suspension parameters of the chassis including the dual stage stiffness of the leaf spring, the contact load of the leaf spring, the torsional rigidity of the torsion bar, the force curve of the front and rear dampers etc. The chassis tuning process of a physical commercial vehicle was first put forward. In the proposed flowchart, the kinematics and statics of front & rear suspensions were checked at the beginning of the tuning. Then the tire mechanical characteristics were tested by using a plate-type tire tester and the inertial parameters of the vehicle were indirectly measured. The K&C characteristics of front and rear suspensions were also tested and compared with the benchmark vehicle's.
Technical Paper

Co-Simulation Research of Integrated Electro-Hydraulic Braking System

2016-04-05
2016-01-1647
A program of integrated electro-hydraulic braking system is proposed, and its structural composition and working principle are analyzed. According to the structural and mechanical characteristics of all key components, through some reasonable assumptions and simplifications, a motor, a brake master cylinder, four brake wheel cylinders, solenoid valves and an ESP (Electronic Stability Program) algorithm model is set up and simulations of typical braking conditions are carried out based on the Matlab/Simulink. Finally, after the assembly of each sub-model is complete and combining a vehicle which is set up in CarSim software environment, simulation tests and comprehensive performance analysis of the active safety stability control for a vehicle in double lane change and single lane change situations are carried out respectively. According to the dynamic characteristic curves of system, the effects of different structural and control parameters on braking performance are analyzed.
Technical Paper

Comparative Analysis of Clustering Algorithms Based on Driver Steering Characteristics

2024-04-09
2024-01-2570
Driver steering feature clustering aims to understand driver behavior and the decision-making process through the analysis of driver steering data. It seeks to comprehend various steering characteristics exhibited by drivers, providing valuable insights into road safety, driver assistance systems, and traffic management. The primary objective of this study is to thoroughly explore the practical applications of various clustering algorithms in processing driver steering data and to compare their performance and applicability. In this paper, principal component analysis was employed to reduce the dimension of the selected steering feature parameters. Subsequently, K-means, fuzzy C-means, the density-based spatial clustering algorithm, and other algorithms were used for clustering analysis, and finally, the Calinski-Harabasz index was employed to evaluate the clustering results. Furthermore, the driver steering features were categorized into lateral and longitudinal categories.
Technical Paper

Control Synthesis for Distributed Vehicle Platoon Under Different Topological Communication Structures

2019-04-02
2019-01-0494
The wireless inter-vehicle communication provide a manner to achieve multi-vehicle cooperative driving, and the platoon of automotive vehicle can significantly improve traffic efficiency and ensure traffic safety. Previous researches mostly focus on the state of the proceeding vehicle, and transmit information from self to the succeeding vehicle. Nevertheless, this structure possesses high requirements for controller design and shows poor effect in system stability. In this paper, the state of vehicles is not only related to the information of neighbor vehicles, while V2V communication transmit information over a wide range of area. To begin with, the node dynamic model of vehicle is described by linear integrator with inertia delay and the space control strategy is proposed with different topological communication structures as BF, LBF, PBF, etc.
Journal Article

Design and Power-Assisted Braking Control of a Novel Electromechanical Brake Booster

2018-04-03
2018-01-0762
As a novel assist actuator of brake system, the electromechanical brake (EMB) booster has played a significant role in the battery electric vehicles and automatic driving vehicles. It has advantages of independent to vacuum source, active braking, and tuning pedal feeling compared with conventional vacuum brake booster. In this article, a novel EMB booster system is proposed, which is consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction by gears and ball screw, a servo body, and a reaction disk. Together with the hydraulic control unit, it has two working modes: active braking for automatic drive and passive braking for driver intervention. The structure and work principle of the electric brake booster system is first introduced. The precise control from pedal force to hydraulic pressure is the key for such a power-assisted brake actuator. We translate the control problem of force feedback control to position tracking control.
Technical Paper

Design of Automatic Parallel Parking System Based on Multi-Point Preview Theory

2018-04-03
2018-01-0604
As one of advanced driver assistance systems (ADAS), automatic parking system has great market prospect and application value. In this paper, based on an intelligent vehicle platform, an automatic parking system is designed by using multi-point preview theory. The vehicle kinematics model was established, based on Ackermann steering principle. By analyzing working conditions of parallel parking, complex constraint condition of parking trajectory is established and reference trajectory based on sine wave is proposed. In addition, combined with multi-point preview theory, the design of trajectory following controller for automatic parking is completed. The cost function is designed, which consider the trajectory following effect and the degree of easy handling. The optimization of trajectory following control is completed by using the cost function.
Technical Paper

Development and Validation of New Control Algorithm for Parallel Hybrid Electric Transit Bus

2006-10-31
2006-01-3571
The new control algorithm for parallel hybrid electric vehicle is presented systematically, in which engine operation points are limited within higher efficient area by the control algorithm and the state of charge (SOC) is limited in a range in order to enhance the batteries' charging and discharging efficiency. In order to determine the ideal operating point of the vehicle's engine, the control strategy uses a lookup table to determine the torque output of the engine. The off-line simulation model of parallel HEV power train is developed which includes the control system and controlled objective (such as engine, electric motor, battery pack and so on). The results show that the control algorithm can effectively limite engine and battery operation points and much more fuel economy can be achieved than that of conventional one.
Technical Paper

Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster

2019-04-02
2019-01-1105
To meet the new requirements of braking system for modern electrified and intelligent vehicles, various novel electro-mechanical brake boosters (Eboosters) are emerging. This paper is aimed at a new type of the Ebooster, which is mainly consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission and a servo mechanism. Among them, the PMSM is a vital actuator to realize the functions of the Ebooster. To get fast response of the Ebooster system, a novel control strategy employing a maximum torque per ampere (MTPA) control with current compensation decoupling and current-adjusting adaptive flux-weakening control is proposed, which requires the PMSM can operate in a large speed range and maintain a certain anti-load interference capability. Firstly, the wide speed control strategy for the Ebooster’s PMSM is designed in MATLAB/Simulink.
X