Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

A Novel Vision-Based Framework for Real-Time Lane Detection and Tracking

2019-04-02
2019-01-0690
Lane detection is one of the most important part in ADAS because various modules (i.e., LKAS, LDWS, etc.) need robust and precise lane position for ego vehicle and traffic participants localization to plan an optimal routine or make proper driving decisions. While most of the lane detection approaches heavily depend on tedious pre-processing and great amount of assumptions to get reasonable result, the robustness and efficiency are deteriorated. To address this problem, a novel framework is proposed in this paper to realize robust and real-time lane detection. This framework consists of two branches, where canny edge detection and Progressive Probabilistic Hough Transform (PPHT) are introduced in the first branch for efficient detection.
Technical Paper

Driving Behavior Prediction at Roundabouts Based on Integrated Simulation Platform

2018-04-03
2018-01-0033
Due to growing interest in automated driving, the need for better understanding of human driving behavior in uncertain environment, such as driving behavior at un-signalized crossroad and roundabout, has further increased. Driving behavior at roundabout is greatly influenced by different dynamic factors such as speed, distance and circulating flow of the potentially conflicting vehicles, and drivers should choose whether to leave or wait at the upcoming exit according to these factors. In this paper, the influential dynamic factors and driving behavior characteristics at the roundabout is analyzed in detail, random forest method is then deployed to predict the driving behavior. For training the driving behavior model, four typical roundabout layouts were created under a real-time driving simulator with PanoSim-RT and dSPACE. Traffic participants with different motion style were also set in the simulation platform to mimic real driving conditions.
X