Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Active Interior Noise Control for Passenger Vehicle Using the Notch Dual-Channel Algorithms with Two Different Predictive Filters

2021-02-18
2020-01-5228
Active control of low-frequency engine order noise helps to improve the passenger’s sense of hearing, so it has become one of the hot topics in the automotive field. Depth improvement of active noise control (ANC) performance from the perspective of novel algorithms has attracted the attention of researchers. The conventional notch dual-channel filtered-x least mean square (NDFxLMS) algorithm shows acceptable noise reduction for the elimination of engine order noise. To further enhance the steady-state ANC effect, this paper proposed two new notch algorithms: the notch dual-channel filtered-x recursive least square (NDFxRLS) algorithm and the notch dual-channel affine projection (NDAP) algorithm. Vehicle simulation tests show that both the proposed algorithms, especially the NDFxRLS algorithm, have a satisfying performance for the cancellation of interior noise from the engine.
Technical Paper

Computational Accuracy and Efficiency of the Element Types and Sizes for Car Acoustic Finite Element Model

2014-04-01
2014-01-0890
Automobile cabin acoustical comfort is one of the main features that may attract customers to purchase a new car. The acoustic cavity mode of the car has an effect on the acoustical comfort. To identify the factors affecting computing accuracy of the acoustic mode, three different element type and six different element size acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different element type models are meshed in three different ways, tetrahedral elements, hexahedral elements and node coupling tetrahedral and hexahedral elements (tetra-hexahedral elements). The six different element size models are meshed with hexahedral element varies from 50mm to 75mm. Modal analysis test of the passenger car is conducted using loudspeaker excitation to identify the compartment cavity modes.
Journal Article

Further Study of the Vehicle Rattle Noise with Consideration of the Impact Rates and Loudness

2020-04-14
2020-01-1261
With the prevalent trend of the pure electric vehicle, vehicle interior noise has been reduced significantly. However, other noises become prominent in the cabin. Especially, the BSR noise generated by friction between parts and the clearance between components become the elements of complaints directly affect the quality of vehicles. Currently, the BSR noises are subjectively evaluated by experts, and the noise samples are simply labeled as ‘qualified’ or ‘unqualified’. Therefore, it is necessary to develop an evaluation model to assess the BSR noise objectively. In this paper, we study the vehicle rattle noise intensively. Several types of rattle noise were recorded in a semi-anechoic room. The recorded signals were then processed in the LMS test lab. to extract the single impact segments. A pool of simulated signals with different impact rates (number of impacts per second) and various loudness was synthesized for analyzation.
Technical Paper

Lightweight Design and Multi-Objective Optimization for a Lower Control Arm Considering Multi-Disciplinary Constraint Condition

2019-04-02
2019-01-0822
The requirement for low emissions and better vehicle performance has led to the demand for lightweight vehicle structures. Two new lightweight methods of design and optimization for the lower control arm were proposed in this research to improve the effectiveness of the traditional lightweight method. Prior to the two lightweight design and optimization methods, the static performance, including strength, stiffness and mode, and fatigue performance for the lower control arm were analyzed and they provided constraints for subsequent design and optimization. The first method of lightweight design and optimization was integrated application of topography optimization, size optimization, shape optimization and free shape optimization for the control arm. Topography optimization was first applied to find the optimal distribution form of reinforcement rib for the lower control arm. Size optimization was then applied in this study to optimize the plate thickness.
Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
X