Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

A Multi-mode Control Strategy for EV Based on Typical Situation

2017-03-28
2017-01-0438
A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance. To solve above problems, this paper uses the key technology of mathematical statistics process in MATLAB, such as the mean, linear fitting and discrete algorithms to clean up, screening and classification the original data in general rules, and based on short trips in the segments of kinematics analysis method to establish a representative of quintessential driving cycle.
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
Technical Paper

Auxiliary Drive Control Strategy of Hydraulic Hub-Motor Auxiliary System for Heavy Truck

2016-09-27
2016-01-8113
To improve traditional heavy commercial vehicles performance, this paper introduces a novel hydraulic hub-motor auxiliary system, which could achieve auxiliary driving and auxiliary braking function. Firstly, the system configuration and operation modes are described. In order to achieve coordinating control and distribution of the engine power between mechanical and hydraulic paths, the paper proposes an optimal algorithm based on enhance of vehicle slip efficiency and the results show that displacement of hydraulic variable pump relates with the transmission gear ratio. And then the hydraulic pump displacement controller is designed, in which the feedforward and feedback strategy is adopted. Considering the characteristics of hydraulic hub-motor auxiliary system, a layered auxiliary drive control strategy is proposed in the paper, which includes signal layers, core control layers and executive layers.
Technical Paper

Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster

2019-04-02
2019-01-1105
To meet the new requirements of braking system for modern electrified and intelligent vehicles, various novel electro-mechanical brake boosters (Eboosters) are emerging. This paper is aimed at a new type of the Ebooster, which is mainly consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission and a servo mechanism. Among them, the PMSM is a vital actuator to realize the functions of the Ebooster. To get fast response of the Ebooster system, a novel control strategy employing a maximum torque per ampere (MTPA) control with current compensation decoupling and current-adjusting adaptive flux-weakening control is proposed, which requires the PMSM can operate in a large speed range and maintain a certain anti-load interference capability. Firstly, the wide speed control strategy for the Ebooster’s PMSM is designed in MATLAB/Simulink.
Technical Paper

Development of an Advanced Stability Control System of 4WD Electric Vehicle with In-Wheel-Motors

2016-04-05
2016-01-1671
Direct yaw moment control can maintain the vehicle stability in critical situation. For four-wheel independently driven (4WD) electric vehicle with in-wheel motors (IWMs), direct yaw moment control (DYC) can be easily achieved. A fairly accurate calculation of the required yaw moment can improve vehicle stability. A novel sliding mode control (SMC) technique is employed for the motion control so as to track the desired vehicle motion, which is it for different working circumstances compared to the well-used traditional DYC. Through the weighted least square algorithm, the lower controller is used to determine the torque properly allocated to each wheel according to the desired yaw moment. Several actuator constraints are considered in the control strategy. In addition, a nonlinear tire model is utilized to improve the accuracy of tire lateral force estimation. Then, simulations are carried out and the values of vehicle states are compared.
Technical Paper

LPV Model Based Robust Gain Scheduling Control of Vehicle Stability

2008-10-07
2008-01-2598
In this paper, considering the influence of longitudinal velocity on vehicle dynamics, an LPV (Linear Parameter Varying) model about longitudinal velocity is developed for the design of stability controller. A polytopic error dynamic model is developed and the weights for each vertex are selected. A robust gain scheduling control (RGSC) scheme based on an LPV model by controlling of the yaw moment is proposed to enhance vehicle stability especially in severe conditions. Some nonlinear numerical simulations are carried out on an 8-DOF nonlinear vehicle model for a J-turn manoeuvre and a lane-change manoeuvre respectively. The results demonstrate that considerable improvement in vehicle stability can be obtained by the RGSC controlled vehicle in a large range of longitudinal velocity compared with the conventional H∞ dynamic output-feedback controller and the uncontrolled vehicle.
Technical Paper

Lateral Stability Control Algorithm of Intelligent Electric Vehicle Based on Dynamic Sliding Mode Control

2016-09-14
2016-01-1902
A new lateral stability control method, which is based on vehicle sideslip angle and tire cornering stiffness estimation, is proposed to improve the lateral stability of the four-in-wheel-motor-driven electric vehicle (FIWMD-EV) in this paper. Through the lateral tire force information, vehicle sideslip angle can be estimated by the extended kalman filter (EKF). Using the estimated vehicle sideslip angle, tire cornering stiffness can be also estimated by forgetting factor recursive least squares (FFRLS). Furthermore, combining with the vehicle dynamics model, an adaptive control target model is proposed with the information on vehicle sideslip angle and tire cornering stiffness. The new lateral stability control system uses the direct yaw moment control (DYC) based on dynamic sliding mode is proposed. The performance and effectiveness of the proposed vehicle state estimation and lateral stability control system are verified by CarSim and Simulink cosimulation.
Technical Paper

Optimization of Vehicle Ride Comfort and Handling Stability Based on TOPSIS Method

2015-04-14
2015-01-1348
A detailed multi-body dynamic model of a passenger car was modeled using ADAMS/Car and then checked by the ride comfort and handling stability test results in this paper. The performance criterion for ride comfort evaluation was defined as the overall weighted acceleration root mean square (RMS) value of car body floor, while the roll angle and lateral acceleration of car body were considered as evaluation indicators for handling stability performance. Simultaneously, spring stiffness and shock absorber damping coefficients of the front and rear suspensions were taken as the design variables (also called factors), which were considered at three levels. On this basis, a L9 orthogonal array was employed to perform the ride and handling simulations.
Technical Paper

Research on Roll Vibration Characteristics of a Truck's Front Suspension

2015-04-14
2015-01-0635
For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
Technical Paper

Research on Yaw Stability Control of Unmanned Vehicle Based on Integrated Electromechanical Brake Booster

2020-04-14
2020-01-0212
The Electromechanical Brake Booster system (EMBB) integrates active braking and energy recovery and becomes a novel brake-by-wire solution that substitutes the vacuum booster. While the intelligent unmanned vehicle is in unstable state, the EMBB can improve the vehicle yaw stability more quickly and safely. In this paper, a new type of integrated EMBB has been designed, which mainly includes two parts: servo motor unit and hydraulic control unit. Aiming at the dynamic instability problem of intelligent unmanned vehicle, a three-layer vehicle yaw stability control structure including decision layer, distribution layer and execution layer is proposed based on integrated EMBB. Firstly, the decision layer calculates the ideal yaw rate and the side slip angle of the vehicle with the classic 2DOF vehicle dynamics model. The boundary of the stable region is determined by the phase plane method and the additional yaw moment is determined by the feedback PI control algorithm.
Technical Paper

Research on the Dynamic Integration Control for Distributed-Traction Electric Vehicle with Four-Wheel-Distributed Steering System

2018-04-03
2018-01-0814
With rapid development of the automobile industry and the growing maturity of the automotive electronic technologies, the distributed-traction electric vehicle with four-wheel-distributed steering/braking/traction systems is regarded as an important development direction. With its unique chassis structure, it is the ideal benchmark platform used to evaluate active safety systems. The distributed-traction electric vehicle with four-wheel-distributed steering system is essentially full drive-by-wire vehicle. With its flexible chassis layout and high control degrees-of-freedom, the full drive-by-wire electric vehicle acted as a kind of redundant system is an ideal platform for the research of integrated control. In this treatise, the longitudinal dynamics of the electric vehicle as well as its lateral and yaw motions are controlled simultaneously.
Technical Paper

Scheme and Structure Design of Binary Double Internal Meshing Planetary Gear Transmission

2021-04-14
2020-01-5227
Aiming at the low transmission efficiency and power density of the hydraulic automatic transmission (AT), and the increasingly complex structure of its planetary gear with the increase of transmission gears, this paper proposes a new type of binary logic transmission (BLT), which adopts the double internal meshing planetary row (DIMPR), based on a heavy-duty commercial vehicle. By introducing the concept of BLT and analyzing the transmission performance of the DIMPR, the process of scheme design of binary double internal meshing planetary gear transmission (BDIMPGT) is established. According to the structural characteristics of the DIMPG, the support structure of the planetary gear is designed based on CAD and CATIA. In the structural design of binary clutches, V-groove clutch parts are coupled to the transmission case, planetary carrier, and sun shaft, respectively, in each DIMPG.
Technical Paper

The Integrated Control of SBW and 4WS

2007-08-05
2007-01-3674
Steer-by-wire System is a new conception for steering system, which eliminates those mechanical linkages between hand steering wheel and front wheels, and communicates among the driver and wheels by signals and controllers. All these facilities improve the safety and conformability of the vehicle system and get rid of the mechanical constricts. This paper proposed three vehicle stability control strategies, including front wheel control, yaw rate feedback control and yaw rate& acceleration feedback control. We compared these three control methods by simulation and simulator tests. We also studied the integrated control algorithm of Steer-by-Wire System and 4WS, and compared with 2WS for SBW and the classical 4WS.
Technical Paper

Traction Control System of Electric Vehicle with 4 In-Wheel Motors using Lyapunov Stability Analysis Algorithm

2021-04-06
2021-01-0122
A TCS strategy of electric vehicle with 4 in-wheel motors is proposed in this paper. The control method consists of three parts: target slip rate calculation, target torque calculation and coordination control. By using Lyapunov stability analysis algorithm, the target slip rate boundary which makes the system stable is obtained. The target torque of each wheel is calculated by PI controller. According to the engineering experience, the TCS coordinated control strategy under split friction coefficient (split-μ) road, and friction coefficient jump(μ jump) road is proposed. The test results show that this strategy can improve the acceleration comfort and yaw stability of vehicles on uniform low friction coefficient (low μ) , split-μ and μ jump road.
Technical Paper

Vehicle Yaw Stability Model Predictive Control Strategy for Dynamic and Multi-Objective Requirements

2024-04-09
2024-01-2324
Vehicle yaw stability control (YSC) can actively adjust the working state of the chassis actuator to generate a certain additional yaw moment for the vehicle, which effectively helps the vehicle maintain good driving quality under strong transient conditions such as high-speed turning and continuous lane change. However, the traditional YSC pursues too much driving stability after activation, ignoring the difference of multi-objective requirements of yaw maneuverability, actuator energy consumption and other requirements in different vehicle stability states, resulting in the decline of vehicle driving quality. Therefore, a vehicle yaw stability model predictive control strategy for dynamic and multi-objective requirements is proposed in this paper. Firstly, the unstable characteristics of vehicle motion are analyzed, and the nonlinear two-degree-of-freedom vehicle dynamics models are established respectively.
Technical Paper

Yaw/Roll Stability Modeling and Control of HeavyTractor-SemiTrailer

2007-08-05
2007-01-3574
This paper sets up a simplified dynamic model for simulating the yaw/roll stability of heavy tractor-semitrailer using Matlab/Simulink. A linear quadratic regulator (LQR) based on partial-state feedback controller is used to optimize the roll stability of the vehicle. The control objective for optimizing roll stability is to be reducing the lateral load transfer rate while keeping the suspension angle less than the maximum allowable angle. The simulation result shows that the LQR controller is effective in the active roll stability control of the heavy tractor-semitrailer.
X