Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

Design and Control of Torque Feedback Device for Driving Simulator Based on MR Fluid and Coil Spring Structure

2018-04-03
2018-01-0689
Since steering wheel torque feedback is one of the crucial factors for drivers to gain road feel and ensure driving safety, it is especially important to simulate the steering torque feedback for a driving simulator. At present, steering wheel feedback torque is mainly simulated by an electric motor with gear transmission. The torque response is typically slow, which can result in drivers’ discomfort and poor driving maneuverability. This paper presents a novel torque feedback device with magnetorheological (MR) fluid and coil spring. A phase separation control method is also proposed to control its feedback torque, including spring and damping torques respectively. The spring torque is generated by coil spring, the angle of coil spring can be adjusted by controlling a brushless DC motor. The damping torque is generated by MR fluid, the damping coefficient of MR fluid can be adjusted by controlling the current of excitation coil.
Journal Article

Design of Anti-lock Braking System Based on Regenerative Braking for Distributed Drive Electric Vehicle

2018-04-03
2018-01-0816
In this article, the regenerative braking system is designed, which can realize the torque allocation between electric braking and hydraulic braking, where the cost function designed in this article considers factors of braking torque following effect, energy regenerative power, and hydraulic braking consumed power. In addition, a complete anti-lock braking system (ABS) is designed, which is based on regenerative braking. With the optimal slip ratio as control target, target wheel speed, control wheel speed, braking torque control strategy, and enable/disenable control logic of ABS are determined. By MATLAB/Simulink-DYNA4 co-simulation and real vehicle test, the feasibility and applicability of ABS based on regenerative braking are verified, under the condition of small severity of braking.
Technical Paper

Hierarchical Framework for Adaptive Cruise Control with Model Predictive Control Method

2017-09-23
2017-01-1963
Adaptive cruise control (ACC), as one of the advanced driver assistance systems (ADAS), has become increasingly popular in improving both driving safety and comfort. Since the objectives of ACC can be multi-dimensional, and often conflict with each other, it is a challenging task in its control design. The research presented in this paper takes ACC control design as a constrained optimization problem with multiple objectives. A hierarchical framework for ACC control is introduced, aimed to achieve optimal performance on driving safety and comfort, speed and/or distance tracking, and fuel economy whenever possible. Under the hierarchical framework, the operational mode is determined in the upper layer, in which a model predictive control (MPC) based spacing controller is employed to deal with the multiple control objectives. On the other hand, the lower layer is for actuator control, such as braking and driving control for vehicle longitudinal dynamics.
Technical Paper

Integrated Threat Assessment for Trajectory Planning of Intelligent Vehicles

2016-04-05
2016-01-0153
This paper reports an effort to improve plan of vehicle trajectory using an approach with rapidly-exploring random trees (RRT), which has been widely adopted in the prior art for complex and dynamic traffic environment. Design and implement of an integrated threat assessment is presented that evaluates threats of the trajectory. A node and trajectory evaluation index was introduced into the proposed RRT algorithm to connect an appropriate node and select the best trajectory. The contribution of this paper is on the threat assessment that takes into account not only obstacle avoidance but also stability. The simulation is conducted and the results show that the proposed method works as expected and is valid and effective.
Technical Paper

Personalized Eco-Driving for Intelligent Electric Vehicles

2018-08-07
2018-01-1625
Minimum energy consumption with maximum comfort driving experience define the ideal human mobility. Recent technological advances in most Advanced Driver Assistance Systems (ADAS) on electric vehicles not only present a significant opportunity for automated eco-driving but also enhance the safety and comfort level. Understanding driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system comfort. This research focuses on the personalized and green adaptive cruise control for intelligent electric vehicle, which is also known to be MyEco-ACC. MyEco-ACC is based on the optimization of regenerative braking and typical driving styles. Firstly, a driving style model is abstracted as a Hammerstein model and its key parameters vary with different driving styles. Secondly, the regenerative braking system characteristics for the electric vehicle equipped with 4-wheel hub motors are analyzed and braking force distribution strategy is designed.
Technical Paper

Research on Vehicle Stability Control Strategy Based on Integrated-Electro-Hydraulic Brake System

2017-03-28
2017-01-1565
A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
Technical Paper

Research on a Novel Electro-Hydraulic Brake System and Pressure Control Strategy

2018-04-03
2018-01-0764
Based on the research and analysis of the current brake systems, this paper presents a novel electro-hydraulic brake system, which can better meet the functional requirements. The system mainly contains a master cylinder, two brake hydraulic cylinders and drive motors, two transmission mechanisms, thirteen solenoid valves, pedal force simulator, etc. Since the proposed brake system uses a dual motor along with two brake hydraulic cylinders, it has advantages in providing fast pressure response, flexible working modes, high precision and strong fault tolerance. In order to facilitate the study of pressure control algorithm for the proposed brake system, a mathematical model of the brake system is firstly established, then a multiplexed time-division pressure control algorithm is proposed to realize the simultaneous or partially simultaneous pressure control, which ensures the high precision and short response time.
X