Refine Your Search

Topic

Search Results

Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

A HiL Test Bench for Monocular Vision Sensors and Its Applications in Camera-Only AEBs

2019-04-02
2019-01-0881
This paper presents a HiL test bench specifically designed for closed-loop testing of the monocular-vision based ADAS sensors, whereby the animated pictures of the virtual scene is calibrated and projected onto a 120-degree circular screen, such that the camera sensor installed has the same vision as the observation of the real-world scene. A high-fidelity AEBs model is established and deployed in the real-time target of the HiL system, making intervention decisions based on the instance-level detection information transmitted from the physical sensor. By referring to the 2018 edition of the C-NCAP testing protocol, the HiL tests of the rear-end collision scenarios is performed to investigate the performance and characteristics of the longitudinal-motion sensing of the sensor sample under test.
Technical Paper

A Hybrid Physical and Data-Driven Framework for Improving Tire Force Calculation Accuracy

2023-04-11
2023-01-0750
The accuracy of tire forces directly affects the vehicle dynamics model precision and determines the ability of the model to develop the simulation platform or design the control strategy. In the high slip angle, due to the complex interactions at tire-road interfaces, the forces generated by the tires are high nonlinearity and uncertainty, which pose issues in calculating tire force accurately. This paper presents a hybrid physical and data-driven tire force calculation framework, which can satisfy the high nonlinearity and uncertainty condition, improve the model accuracy and effectively leverage prior knowledge of physical laws. The parameter identification for the physical tire model and the data-based compensation for the unknown errors between the physical tire model and actual tire force data are contained in this framework. First, the parameters in the selected combined-slip Burckhardt tire model are identified by the nonlinear least square method with tire test data.
Technical Paper

A New Method to Accelerate Road Test Simulation on Multi-Axial Test Rig

2017-03-28
2017-01-0200
Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
Technical Paper

A Prediction Method of Tire Combined Slip Characteristics from Pure Slip Test Data

2020-04-14
2020-01-0896
A high-precision steady state tire model is critical in the tire and vehicle matching research. For the moment, the popular Magic Formula model is an empirical model, which requires the pure and combined test data to identify the model parameters. Although MTS Flat-trac is an efficient tire test rig, the long test period and high test cost of a complete tire model tests for handling are yet to be solved. Therefore, it is necessary to explore a high accuracy method for predicting tire complex mechanical properties with as few test data as possible. In this study, a method for predicting tire combined slip characteristics from pure cornering and pure longitudinal test data has been investigated, and verified by comparing with the test data. Firstly, the prediction theory of UniTire model is introduced, and the formula for predicting combined slip characteristics based on constant friction coefficient is derived.
Technical Paper

Active Damping of Engine Idle Speed Oscillation by Applying Adaptive Pid Control

2001-03-05
2001-01-0261
This paper investigates the use of an adaptive proportional-integral-derivative (APID) controller to reduce a combustion engine crankshaft speed pulsation. Both computer simulations and engine test rig experiments are used to validate the proposed control scheme. The starter/alternator (S/A) is used as the actuator for engine speed control. The S/A is an induction machine. It produces a supplemental torque source to cancel out the fast engine torque variation. This machine is placed on the engine crankshaft. The impact of the slowly varying changes in engine operating conditions is accounted for by adjusting the APID controller parameters on-line. The APID control scheme tunes the PID controller parameters by using the theory of adaptive interaction. The tuning algorithm determines a set of PID parameters by minimizing an error function. The error function is a weighted combination of the plant states and the required control effort.
Technical Paper

An Adaptive Clamping Force Control Strategy for Electro-Mechanical Brake System Considering Nonlinear Friction Resistance

2024-04-09
2024-01-2282
The Electronic Mechanical Braking (EMB) system, which offers advantages such as no liquid medium and complete decoupling, can meet the high-quality active braking and high-intensity regenerative braking demands proposed by intelligent vehicles and is considered one of the ideal platforms for future chassis. However, traditional control strategies with fixed clamping force tracking parameters struggle to maintain high-quality braking performance of EMB under variable braking requests, and the nonlinear friction between mechanical components also affects the accuracy of clamping force control. Therefore, this paper presents an adaptive clamping force control strategy for the EMB system, taking into account the resistance of nonlinear friction. First, an EMB model is established as the simulation and control object, which includes the motor model, transmission model, torque balance model, stiffness model, and friction model.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

Analysis of Active Collision Avoidance Performance Based on Cooperative Regenerative Auxiliary Braking System

2019-11-04
2019-01-5027
Active collision avoidance can assist drivers to avoid longitudinal collision through active brake. Regenerative braking can improve the driving range and braking response speed. At this stage, conventional hydraulic braking system limits the implements of above technologies because of its poor performance of response speed and coordinated control. While the brake-by-wire system is a better actuator that can fulfill requirements of automotive electric and intelligent development due to its rapid response and flexible adjustment. However, the system control algorithm becomes more complicated with introduction of regenerative braking and active collision avoidance function, which is also the main problem solved in this paper.
Technical Paper

Architecture of iBus: A Self-Driving Bus for Public Roads

2017-03-28
2017-01-0067
Safety of buses is crucial because of the large proportion of the public transportation sector they constitute. To improve bus safety levels, especially to avoid driver error, which is a key factor in traffic accidents, we designed and implemented an intelligent bus called iBus. A robust system architecture is crucial to iBus. Thus, in this paper, a novel self-driving system architecture with improved robustness, such as to failure of hardware (including sensors and controllers), is proposed. Unlike other self-driving vehicles that operate either in manual driving mode or in self-driving mode, iBus offers a dual-control mode. More specifically, an online hot standby mechanism is incorporated to enhance the reliability of the control system, and a software monitor is implemented to ensure that all software modules function appropriately. The results of real-world road tests conducted to validate the feasibility of the overall system confirm that iBus is reliable and robust.
Technical Paper

CAN Communication Applying on the Performance Evaluating of Electronic Brake System for Commercial Vehicle

2006-10-31
2006-01-3582
In the performance evaluating of Electronic Brake System, conventional test methods have some inconvenience in existence. For example, the fixing of pressure sensors and wheel speed sensors is restrained by the installation position, and the precision of measuring is prone to be affected by the environment conditions. Since Electronic Brake System is featured by CAN (Controller Area Network) communication, special testing instrument can be connected with CAN bus, monitoring signals transmitting on the bus. This paper outlines the results of the study performed to analyze the application of CAN communication in the way of performance evaluation of Electronic Braking System.
Technical Paper

CATARC New Type Drivetrain NVH Test Facility

2019-04-02
2019-01-0788
A vehicle’s NVH performance has a significant impact on the user experience of the driver and passengers. About one-third of the vehicle complaints are related to NVH performance. As the core component of the vehicle, the drivetrain’s NVH characteristics have a significant impact on vehicle comfort. How to reliably and stably reproduce the specific condition of the whole vehicle through the test method, and obtain the highly consistent objective data for analyzing and improving the NVH characteristics of the drivetrain is of great significance in engineering. For this purpose, China Automotive Technology Research Center Co., Ltd. (CATARC) designed and built a new type drivetrain NVH test facility, which consists of five dynamometers, and can carry horizontal/vertical, front/rear drive or four-wheel drive structures including powertrain, transmission, and rear axle, or even a whole vehicle.
Technical Paper

Characteristics of a Common Rail Diesel Injection System under Pilot and Post Injection Modes

2002-03-04
2002-01-0218
Experiments were conducted to investigate the characteristics of a common rail fuel injection system using a flow rate test rig and a single cylinder research diesel engine. Experiments covered speeds and loads typical to engine conditions under Hybrid Electric Vehicle operation. Different injection modes were investigated including main injection, main-post injection and pilot-main injection. The analysis indicated that the common rail fuel pressure affects all the injection parameters including the start of fuel delivery, its duration and amount under all modes of injection. Also, the pressure waves produced in the system have an impact on the operation of the nozzle-needle and fuel delivery particularly in the main-post injection mode.
Journal Article

Characterization of Metal Foil in Anisotropic Fracture Behavior with Dynamic Tests

2018-04-03
2018-01-0108
Metal foil is a widely used material in the automobile industry, which not only is the honeycomb barrier material but is also used as current collectors in Li-ion batteries. Plenty of studies proved that the mechanical property of the metal foil is quite different from that of the metal sheet because of the size effect on microscopic scale, as the metal foil shows a larger fracture stress and a lower ductility than the metal sheet. Meanwhile, the fracture behavior and accurate constitutive model of the metal foil with the consideration of the strain rate effect are widely concerned in further studies of battery safety and the honeycomb. This article conducted experiments on 8011H18 aluminum foil, aiming to explore the quasi-static and dynamic tension testing method and the anisotropic mechanical behavior of the very thin foil. Two metal foil dog-bone specimens and three types of notched specimens were tested with a strain rate ranging from 2 × 10−4/s to 40/s and various stress states.
Technical Paper

Chassis Lightweight Hole Placement with Weldline Evaluation

2021-01-07
2020-01-5217
Vehicle weight-driven design comes amid rising higher fuel efficiency standards and must meet the criteria—pass proving ground (PG) test events that are equivalent to customer usage. Computer-aided engineering (CAE) fatigue analysis for PG is a successful push behind to digitally simulate vehicle durability performance with high fidelity. The need for vehicle weight reduction often arises in the vehicle development final phases when CAE methods, time, and tangible cost-effective opportunities are limited or nonexistent. In this research, a new CAE methodology is developed to identify opportunities for lightweight hole placement in the chassis structure and deliver a cost-effective lightweight solution with no additional impact on fatigue life. The successful application of this new methodology exhibits the effectiveness of the truck frame, which is the key chassis structure to support the body, suspension, and powertrain.
Technical Paper

Control System Development for the Diesel APU in Off-Road Hybrid Electric Vehicle

2007-10-30
2007-01-4209
This paper developed a control system for the auxiliary power unit (APU) in off-road series hybrid electric special vehicle. A control system configuration was designed according to the requirements of the high voltage system in series hybrid electric special vehicle. Then optimal engine operating areas were defined. A gain scheduling engine speed PI controller was designed based on these areas. A closed loop voltage regulator was designed for the synchronous generator. The proposed control system was first validated on an APU control test bench. The test results showed the control system guaranteed the diesel APU good dynamic response characteristics while remaining stable output voltage. Finally, the APU control system was implemented on a diesel APU in an off-road series hybrid electric vehicle and a road test was conducted. The road test results showed the APU control system promised good performance in both vehicle dynamics and vehicle high voltage system.
Technical Paper

Development of Fuel Consumption Test Method Standards for Heavy-Duty Commercial Vehicles in China

2011-09-13
2011-01-2292
To restrain the environmental and energy problems caused by oil consumption and improve fuel economy of heavy-duty commercial vehicles, China started developing relevant standards from 2008. This paper introduces the background and development of China's national standard “Fuel consumption test methods for heavy-duty commercial vehicles”, and mainly describes the test method schemes, driving cycle and weighting factors for calculating average fuel consumption of various vehicle categories. The standard applies to heavy-duty vehicles with the maximum design gross mass greater than 3500 kg, including semi-trailer tractors, common trucks, dump trucks, city buses and common buses. The standard adopts the C-WTVC driving cycle which is adjusted on the basis of the World Transient Vehicle Cycle[1, 2] and specifies weighting factors of urban, rural and motorway segments for different vehicle categories.
Technical Paper

Development of Model Based Closed Loop Control Strategy of SCR System for Heavy-Duty Diesel Engines

2017-10-08
2017-01-2383
Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
Journal Article

Development of the Enhanced Peripheral Detection Task: A Surrogate Test for Driver Distraction

2012-04-16
2012-01-0965
Up to now, there is no standard methodology that addresses how driver distraction is affected by perceptual demand and working memory demand - aside from visual allocation. In 2009, the Peripheral Detection Task (PDT) became a NHTSA recommended measure for driver distraction [1]. Then the PDT task was renamed as the Detection Response Task (DRT) because the International Standards Organization (ISO) has identified this task as a potential method for assessing selective attention in detection of visual, auditory, tactile and haptic events while driving. The DRT is also under consideration for adoption as an ISO standard surrogate test for driver performance for new telematics designs. The Wayne State University (WSU) driver imaging group [2, 3] improved the PDT and created the Enhanced Peripheral Detection Task I (EPDT-I) [4]. The EPDT-I is composed of a simple visual event detection task and a video of a real-world driving scene.
Technical Paper

Driver Demand: Eye Glance Measures

2016-04-05
2016-01-1421
This study investigated driver glances while engaging in infotainment tasks in a stationary vehicle while surrogate driving: watching a driving video recorded from a driver’s viewpoint and projected on a large screen, performing a lane-tracking task, and performing the Tactile Detection Response Task (TDRT) to measure attentional effects of secondary tasks on event detection and response. Twenty-four participants were seated in a 2014 Toyota Corolla production vehicle with the navigation system option. They performed the lane-tracking task using the vehicle’s steering wheel, fitted with a laser pointer to indicate wheel movement on the driving video. Participants simultaneously performed the TDRT and a variety of infotainment tasks, including Manual and Mixed-Mode versions of Destination Entry and Cancel, Contact Dialing, Radio Tuning, Radio Preset selection, and other Manual tasks. Participants also completed the 0-and 1-Back pure auditory-vocal tasks.
X