Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Multi-mode Control Strategy for EV Based on Typical Situation

2017-03-28
2017-01-0438
A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance. To solve above problems, this paper uses the key technology of mathematical statistics process in MATLAB, such as the mean, linear fitting and discrete algorithms to clean up, screening and classification the original data in general rules, and based on short trips in the segments of kinematics analysis method to establish a representative of quintessential driving cycle.
Technical Paper

An Acceleration Slip Regulation Strategy for Four-Wheel Independent Drive EV Based on Road Identification

2015-04-14
2015-01-1106
Four-wheel independent drive EV is driven by four brushless DC motors which are embedded in the wheel hubs. It enables each wheel's driving torque to be controlled independently. Due to the motors' torque and rotational speed easily measured, as well as the features of fast response and precise control, the EV enjoys obvious advantages over traditional vehicles in acceleration slip regulation. In this paper a novel acceleration slip regulation strategy for four-wheel independent drive EV is studied. The strategy includes a road identification module for the peak value of road adhesion coefficient and a slip regulation logic based on PID algorithm. Through comparing the current wheel slip ratio and the utilized adhesion coefficient with the typical roads' value, the identification module adopts the fuzzy control algorithm to recognize the similarity between the current road and the typical roads. Utilizing the similarity we can calculate the optimal slip ratio of the current road.
Technical Paper

An Over-Temperature Protection Control Strategy for Electric Power Steering Motor

2012-09-24
2012-01-2057
The EPS motor will be over-heated if large current lasts for a long time, which will decline the performance of EPS motor and even lead to irreparable damage. So the over-temperature protection control should be conducted in order to protect the components of EPS system, especially the durability of EPS motor. In this paper, the motor temperature was estimated according to the environmental temperature and the current of motor armature, and then the EPS assist current was limited based on the estimated temperature of motor to ensure that the EPS motor had a good working condition. So the over-temperature protection control for motor can be realized without increasing the EPS system components. Finally the control strategy for over-temperature protection was conducted in a vehicle with EPS system and its performance was verified.
Technical Paper

Biosignal-Based Driving Experience Analysis between Automated Mode and Manual Mode

2024-04-09
2024-01-2504
With the rapid development of intelligent driving technology, there has been a growing interest in the driving comfort of automated vehicles. As vehicles become more automated, the role of the driver shifts from actively engaging in driving tasks to that of a passenger. Consequently, the study of the passenger experience in automated driving vehicles has emerged as a significant research area. In order to examine the impact of automatic driving on passengers' riding experience in vehicle platooning scenarios, this study conducted real vehicle experiments involving six participants. The study assessed the subjective perception scores, eye movement, and electrocardiogram (ECG) signals of passengers seated in the front passenger seat under various vehicle speeds, distances, and driving modes. The results of the statistical analysis indicate that vehicle speed has the most substantial influence on passenger perception.
Technical Paper

Detection and Tracking Algorithm of Front Vehicle Based on Laser Radar

2015-04-14
2015-01-0307
Nowadays active collision avoidance has become a major focus of research, and a variety of detection and tracking methods of obstacles in front of host vehicle have been applied to it. In this paper, laser radars are chosen as sensors to obtain relevant information, after which an algorithm used to detect and track vehicles in front is provided. The algorithm determines radar's ROI (Region of Interest), then uses a laser radar to scan the 2D space so as to obtain the information of the position and the distance of the targets which could be determined as obstacles. The information obtained will be filtered and then be transformed into cartesian coordinates, after that the coordinate point will be clustered so that the profile of the targets can be determined. A threshold will be set to judge whether the targets are obstacles or not. Last Kalman filter will be used for target tracking. To verify the presented algorithm, related experiments have been designed and carried out.
X