Refine Your Search

Topic

Search Results

Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

Active Steering and Anti-Roll Shared Control for Enhancing Roll Stability in Path Following of Autonomous Heavy Vehicle

2019-04-02
2019-01-0454
Rollover accident of heavy vehicle during cornering is a serious road safety problem worldwide. In the past decade, based on the active intervention into the heavy vehicle roll dynamics method, researches have proposed effective anti-roll control schemes to guarantee roll stability during cornering. Among those studies, however, roll stability control strategies are generally derived independent of front steering control inputs, the interactive control characteristic between steering and anti-roll system have not been thoroughly investigated. In this paper, a novel roll stability control structure that considers the interaction between steering and anti-roll system, is presented and discussed.
Technical Paper

Aerodynamics of Open Wheel Racing Car in Pitching Position

2018-04-03
2018-01-0729
Formula One (F1) racing cars are often running at high-speed with the pitching angle changing frequently due to road conditions. These pitching angle changes result in changes to the car’s aerodynamic characteristics that will directly affect handling stability and other performance factors including safety. This paper takes a F1 racing car as the model; the influence of the change of pitching angle on aerodynamic drag force and lift force are investigated. CFD code-PowerFLOW based LBM is used to simulate the aerodynamic characteristics with different pitching angles. The distribution of aerodynamic coefficients, velocity and pressure in the flow field are obtained; and the differences between different pitching angles were analyzed. The results show that as the pitching angle increases, the drag force increases and the lift force decreases. The down-force of the car is mainly supplied by the front wing and the rear wing.
Technical Paper

Aeroelastic Response and Structural Improvement for Heavy-Duty Truck Cab Deflectors

2019-01-14
2019-01-5004
Numerical simulations on the fluid-structure interaction were conducted using commercial software STAR-CCM+ and ABAQUS. The aeroelastic responses of a deflector under several different working conditions were simulated utilizing finite volume and finite element methods to investigate the aeroelastic problem of automotive deflectors. Results showed that the structural response of a top deflector is minimal under the influence of aerodynamics given its large structural stiffness. The size of the top deflector was optimised by using thickness as a variable. The volume and quality of the top deflector were significantly reduced, and its lightweight performance was improved to satisfy the stiffness performance requirement. The vibration of a side deflector structure was mainly induced by the turbulence on the structure surface. The amplitude of vibration was small and the vibration gradually converged in a few seconds without obvious regularity.
Technical Paper

Balanced Suspension Thrust Rod Fatigue Life Prediction

2016-09-27
2016-01-8044
In order to predict the fatigue life of thrust rod heavy duty commercial vehicle balanced suspension, based on the continuum mechanics theory, the fatigue life prediction model of rubber with equivalent effect as damage parameter is established. Based on the equivalent stress and fatigue cumulative damage theory, the fatigue damage evolution equation of rubber material expressed by stress is derived by using the strain energy function. The general fatigue life model is established by using the maximum logarithmic principal strain as the damage parameter. The finite element model of the thrust rod is established, and the stress distribution of the spherical hinge rubber layer and the easy damage area are analyzed. Based on the equivalent stress calculation results and the axial tension stress and strain data of the rubber material, the accuracy of the results of the finite element calculation is verified.
Technical Paper

Commercial Vehicle's Longitudinal Deceleration Precise Control Considering Vehicle-Actuator Dynamic Characteristics

2024-04-09
2024-01-2313
The installation of the Electronic Braking System (EBS) could effectively improve braking response speed, shorten braking distance, and ensure driving safety of commercial vehicles. However, during longitudinal deceleration control process, the commercial vehicles face not only challenges such as large inertia mass and random road gradient resistance of the vehicle layer, but also non-linear characteristics of the EBS actuator layer. In order to solve these problems, this paper proposes a commercial vehicle’s longitudinal deceleration precise control strategy considering vehicle-actuator dynamic characteristics. First, longitudinal dynamics of commercial vehicle is analyzed, and so is the EBS’ non-linear response hysteresis characteristics. Then, we design the dual layer deceleration control strategy. In vehicle layer, the recursive least squares with forgetting factor and Kalman filtering are comprehensively applied to dynamically estimate the vehicle mass and driving road slope.
Technical Paper

Commercial Vehicles Thrust Rod Static and Dynamic Characteristics Analysis

2016-10-17
2016-01-2345
In order to study the static and dynamic characteristics of the thrust rod. Based on the multi-body dynamics theory, the dynamic model of the thrust rod and the vehicle system is established by using ADAMS software. The limit braking condition is simulated, and the limit braking load of the thrust rod is obtained. Thrust rod finite element model is established, the load calculation value and rubber test data as a finite element analysis of input conditions, using ABAQUS software to carry on the stiffness and strength analysis, analysis results show that the strength meets the requirement, and the stiffness and strength calculation result is in good agreement with the sample test, accurately describes the finite element model. The analytical method used can be used to predict the stiffness of the thrust rod.
Technical Paper

Development and Research on Control Strategy of Advanced Electronic Braking Systems for Commercial Vehicle

2014-09-30
2014-01-2285
Electronic braking system (EBS) of commercial vehicle is developed based on Anti-lock Braking System (ABS), for the purpose of enhancing the braking performance. Based on the previous study, this paper aims at the development and research on the control strategy of advanced electronic braking system for commercial vehicle, which mainly includes braking force distribution and multiple targets control strategy. In the study of braking force distribution control strategy, the mass of vehicle and the axle loads will be calculated dynamically and the braking force of each wheel will be distributed regarding to the axle loads. The braking intention recognition takes the brake pad wear into account when braking uncritically, so it can detect a difference in the pads between the front and the rear axles. The brake assist strategy supports the driver during emergency braking and the braking distance is shortened by the reduction of the braking system response time.
Technical Paper

Development and Verification of Electronic Braking System ECU Software for Commercial Vehicle

2013-11-27
2013-01-2736
Electronic braking system (EBS) of commercial vehicle is developed from ABS to enhance the brake performance. Based on the early development of controller hardware, this paper starts with an analysis of the definition of EBS. It aims at the software design of electronic control unit, and makes it compiled into the controller in the form of C language by the in-depth study about control strategy of EBS in different braking conditions. Designed controller software is divided into two layers. The upper control strategy includes the recognition algorithm of driver's braking intention, estimation algorithm of the vehicle state, conventional braking strategy which consists of the algorithm of deceleration control and braking force distribution, and emergency braking strategy which consists of the algorithm of brake assist control and ABS control.
Technical Paper

Development of Simulation Platform and Control Strategy of Electronic Braking System for Commercial Vehicles

2014-09-30
2014-01-2286
Pneumatic Electric Braking System (EBS) is getting widely spread for commercial vehicles. Pneumatic EBS improves the problem of slow response of traditional pneumatic braking system by implementing brake-by-wire. However, the time-delay response and hysteresis of some electro-pneumatic components and some other issues decrease the response and control accuracy of the pneumatic EBS.
Technical Paper

Development of a Control Strategy and HIL Validation of Electronic Braking System for Commercial Vehicle

2014-04-01
2014-01-0076
This article focuses on the research of control algorithm and control logic for the pneumatic EBS (Electronic Braking System) of commercial vehicle. An overall technical program was proposed which develops conventional braking and emergency braking for commercial vehicle EBS. According to the overall scheme, the methods of vehicle state estimation and driver's braking intention were determined, modeling and simulation for key components of commercial vehicle EBS were then carried out. This lead to the development of deceleration control, braking force distribution, brake assist and ABS control. Simulation models for key components of EBS and control strategy were validated through hardware-in-the-loop simulation tests. Simulation results show that the control strategy improves vehicle braking stability and vehicle active safety.
Journal Article

Experimental Studies on Viscoelasticity of Film Materials in Laminated Glass Sheets

2015-04-14
2015-01-0709
Polyvinyl butyral (PVB) film and SentryGlas® Plus (SGP) film have been widely used in automotive windshield and architecture curtain serving as protective interlayer materials. Viscoelasticity is the unique property of such film materials, which can contribute to improving impact resistance and energy absorbing characteristics of laminated glass. In this study, the uniaxial tensile creep and stress relaxation tests are conducted to investigate the viscoelasticity of PVB and SGP films used in laminated glass. Firstly, tensile creep and stress relaxation tests of PVB film (0.76mm) and SGP film with three thickness (0.89mm, 1.14mm and 1.52mm) are conducted using Instron universal testing machine to obtain creep and stress relaxation curves. Afterwards, both viscoelastic models (Burgers model, Maxwell-Weichert model) and empirical equations (Findley power law, Kohlrausch equation) are applied to simulate the creep and stress relaxation results.
Technical Paper

Fuel Consumption Analysis and Optimizing of a Heavy Duty Dual Motor Coaxial Series-Parallel Hybrid Lorry under C-WTVC

2017-10-08
2017-01-2359
Energy saving is becoming one of the most important issues for the next generation of commercial vehicles. The fuel consumption limits for commercial vehicles in China have stepped into the third stage, which is a great challenge for heavy duty commercial vehicles. Hybrid technology provides a promising method to solve this problem, of which the dual motor coaxial series parallel configuration is one of the best options. Compared with parallel configuration, the powertrain can not only operate in pure electric or parallel mode, but also can operate in series mode, which shows better flexibility. In this paper, regulations on test cycle, fuel consumption limits and calculation method of the third stage will be introduced in detail. Then, the quasi-static models of the coaxial series parallel powertrain with/without gearbox under C-WTVC (China worldwide transient vehicle cycle) are built. The control strategies are designed based on engine and motor performance.
Technical Paper

Fuel Consumption and NOx Emission Prediction of Heavy-Duty Diesel Vehicles under Different Test Cycles and Their Sensitivities to Driving Factors

2020-09-15
2020-01-2002
Due to the rapid development of road infrastructure and vehicle population in China, the fuel consumption and emission of on-road vehicles tested in China World Transient Vehicle Cycle (C-WTVC) cannot indicate the real driving results. But the test results in China Heavy-duty Commercial Vehicle Test Cycle-Coach (CHTC-C) based on the road driving conditions in China are closer to the actual driving data. In this paper, the model for predicting the performance of heavy-duty vehicles is established and validated. The fuel consumption and NOx emission of a Euro VI heavy-duty coach under C-WTVC and CHTC-C tests are calculated by employing the developed model. Furthermore, the fuel consumption of the test coach is optimized and its sensitivity to the driving factors is analyzed.
Technical Paper

Global Off-Road Path Planning of Unmanned Ground Vehicles Based on the Raw Remote Sensing Map

2023-04-11
2023-01-0699
Unmanned Ground Vehicle (UGV) has a wide range of applications in the military, agriculture, firefighting and other fields. Path planning, as a key aspect of autonomous driving technology, plays an essential role for UGV to accomplish the established driving tasks. At present, there are many global path planning algorithms in grid maps on unstructured roads, while general grid maps do not consider the specific elevation or ground type difference of each grid, and unstructured roads are generally considered as flat and open roads. On the contrary, the unmanned off-road is always a bumpy road with undulating terrain, and meanwhile, the landform is complex and the types of features are diverse. In order to ensure the safety and improve the efficiency of autonomous driving of UGV in off-road environment, this paper proposes a global off-road path planning method for UGV based on the raw image of remote sensing map. Firstly, the raw image is gridded.
Technical Paper

Head Protection Characteristics of Windshield During Pedestrian-Vehicle Accident

2011-04-12
2011-01-0082
The windshield is one of the most critical vehicle components in terms of pedestrian safety; however, it has not been thoroughly and systematically investigated through combined experimental and theoretical analysis. Firstly, this paper carries out quasi-static experiments on Material Testing System (MTS) and dynamic experiments on Split Hopkinson Pressure Bar (SHPB) and new tests data are obtained. Results indicate that Polyvinyl butyral (PVB)-laminated glass behaves nonlinearly and rate-dependently under various strain rates, from 1x10-⁵s-₁~6x10₃ s-₁. Thus, a constitutive model covering all strain rates is proposed to describe the constitutive behavior of PVB-laminated glass and it fits well with the experimental data. Further, the constitutive relation is embedded into the 3D finite element model of windshield. With the definition of four governing factors and two evaluation indicators, the head protection characteristics of windshield are numerically studied.
Technical Paper

Hierarchical Control Strategy of Predictive Energy Management for Hybrid Commercial Vehicle Based on ADAS Map

2023-04-11
2023-01-0543
Considering the change of vehicle future power demand in the process of energy distribution can improve the fuel saving effect of hybrid system. However, current studies are mostly based on historical information to predict the future power demand, where it is difficult to guarantee the accuracy of prediction. To tackle this problem, this paper combines hybrid energy management with predictive cruise control, proposing a hierarchical control strategy of predictive energy management (PEM) that includes two layers of algorithms for speed planning and energy distribution. In the interest of decreasing the energy consumed by power components and ensuring transportation timeliness, the upper-level introduces a predictive cruise control algorithm while considering vehicle weight and road slope, planning the future vehicle speed during long-distance driving.
Technical Paper

High-Precision Autonomous Parking Localization System based on Multi-Sensor Fusion

2024-04-09
2024-01-2843
This paper addresses the issues of long-term signal loss in localization and cumulative drift in SLAM-based online mapping and localization in autonomous valet parking scenarios. A GPS, INS, and SLAM fusion localization framework is proposed, enabling centimeter-level localization with wide scene adaptability at multiple scales. The framework leverages the coupling of LiDAR and Inertial Measurement Unit (IMU) to create a point cloud map within the parking environment. The IMU pre-integration information is used to provide rough pose estimation for point cloud frames, and distortion correction, line and plane feature extraction are performed for pose estimation. The map is optimized and aligned with a global coordinate system during the mapping process, while a visual Bag-of-Words model is built to remove dynamic features.
Technical Paper

Improving Combustion and Emission Characteristics in Heavy-Duty Natural-Gas Engine by Using Pistons Enhancing Turbulence

2018-09-10
2018-01-1685
Compressed Natural Gas (CNG), because of its low cost, high H/C ratio, and high octane number, has great potential in automotive industry, especially for heavy-duty commercial vehicles. However, relative slow flame speed of natural gas leads to long combustion duration and low thermal efficiency and tends to cause knock combustion at high load, which will aggravate engine thermal load and reliability. Enhancing turbulence intensity in combustion chamber is an effective way to accelerate flame propagation speed and improve combustion performance. In this study, the flow simulations of several piston bowls with different inner-convex forms were carried out using three-dimensional computational fluid dynamics (3D-CFD) software CONVERGE. The numerical results showed the piston bowls with inner-convex could disturb the charge swirl motion and enhance turbulence of different intensity. A hexagram geometry bowl was proved to have the best function in strengthening turbulence intensity.
Journal Article

Influencing Factors of Contact Force Distribution in Pedestrian Upper Legform Impact with Vehicle Front-End

2012-04-16
2012-01-0272
Pedestrian upper leg impact protection is a challenging requirement in the Euro NCAP assessment. In upper legform to bonnet leading edge tests, the legform impact force, the legform intrusion and the injury parameters (impact force and bending moment measured on the upper legform) are highly related to design of vehicle front-end styling and structure, as well as clearance underneath bonnet leading edge. In the course of impact, the contact area variation has significant influence on the stress distribution and consequently the force and the bending moment on the upper legform. Using finite element simulations of upper legform impact with a typical sedan, the deformation of the legform and the vehicle structure, and the variation of the contact force distribution are characterized and analyzed.
X