Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

Fast Engine Torque Variation Compensation for HEVs Using Permanent Magnet Synchronous Motor and Explicit MPC

2021-04-06
2021-01-0718
This research proposes to leverage the fast response time of Permanent Magnet Synchronous Motors (PMSMs) to compensate for crank angle resolved engine torque variations caused by cycle-by-cycle combustion variations. This method reduces powertrain vibration and enables engine calibrations with high combustion variation that produces low fuel consumption. This research integrates a Field Oriented Control (FOC) strategy with an Explicit Model Predictive Control (EMPC) to trace previewed current references. The previewed current references are computed from the engine torque difference between predicted nominal operation and the measured torque output. This research reveals that the MPC can track a d-q current reference without overshoot, rendering current magnitude constraints unnecessary in the MPC formulation. A control rate penalty is used to tune the aggressiveness of transient voltage demand and meet with the DC voltage limit.
X