Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Experiment and Simulation Study on Failure of High Voltage Cables under Indentation

2020-04-14
2020-01-0199
Failure of high voltage cables (HVCs) which sometimes occurs in electric vehicle collision is one of the fuses that leads to severe thermal runaway of the traction battery system, which has not gotten thorough investigations. This paper presents an experiment and simulation study on the failure behaviors of HVCs under indentation loadings. Tests were performed with different combinations of indenter (cylinder indenter with a diameter of 5 mm which was labeled as D5, cylinder indenter with a diameter of 15 mm which was labeled as D15 and wedge indenter with an angle of 60° which was labeled as V60) and loading speed (1.5 mm/min for quasi-static and 2m/s for dynamic). Experimental results indicated that the failure behavior of HVCs was both influenced by the indenter shape and loading speeds. Sharp indenter will led to a component failure sequence from outmost to innermost.
Technical Paper

Mechanical Anisotropy and Strain-Rate Dependency of a Large Format Lithium-Ion Battery Cell: Experiments and Simulations

2021-04-06
2021-01-0755
In order to get a better understanding of the mechanical behavior of lithium-ion battery cells, especially for the mechanical anisotropy and dynamic effect, a series of tests for quasi-static indentation and dynamic impact tests has been designed. In the study, mechanical indentation tests with different indentation heads, different loading directions and different impact speeds were performed on a type of large format prismatic lithium-ion battery cells and jellyrolls of them. To mitigate thermal runaway, only fully-discharged cells and jellyrolls were used. The force-displacement response and open circuit voltage (OCV) were recorded and compared. It shows that jellyroll and battery cell have apparent mechanical anisotropy and strain-rate effect. The stiffness of jellyroll and cell in out-of-plane direction is much larger than that in two in-plane directions.
X