Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

An Accurate Modeling for Permanent Magnet Synchronous Wheel Motor Including Iron Loss

2014-04-01
2014-01-1867
For high torque permanent magnet wheel motor, this paper describes an experimental research method to optimize and identify the motor parameters based on the results of offline calculation. In order to improve the accuracy of motor parameters identification, the motor model considering the affect of iron loss was established, and the motor parameters were identified using genetic algorithm (GA). Based on this, parameters validation experiment was performed. The results show that: parameters obtained by this method can be used to describe the steady-state and transient-state response of permanent magnet synchronous motors accurately.
Technical Paper

Driving Style Identification Strategy Based on DS Evidence Theory

2023-04-11
2023-01-0587
Driving assistance system is regarded as an effective method to improve driving safety and comfort and is widely used in automobiles. However, due to the different driving styles of different drivers, their acceptance and comfort of driving assistance systems are also different, which greatly affects the driving experience. The key to solving the problem is to let the system understand the driving style and achieve humanization or personalization. This paper focuses on clustering and identification of different driving styles. In this paper, based on the driver's real vehicle experiment, a driving data acquisition platform was built, meanwhile driving conditions were set and drivers were recruited to collect driving information. In order to facilitate the identification of driving style, the correlation analysis of driving features is conducted and the principal component analysis method is used to reduce the dimension of driving features.
Technical Paper

Identification of Driver Individualities Using Random Forest Model

2017-09-23
2017-01-1981
Driver individualities is crucial for the development of the Advanced Driver Assistant System (ADAS). Due to the mechanism that specific driving operation action of individual driver under typical conditions is convergent and differentiated, a novel driver individualities recognition method is constructed in this paper using random forest model. A driver behavior data acquisition system was built using dSPACE real-time simulation platform. Based on that, the driving data of the tested drivers were collected in real time. Then, we extracted main driving data by principal component analysis method. The fuzzy clustering analysis was carried out on the main driving data, and the fuzzy matrix was constructed according to the intrinsic attribute of the driving data. The drivers’ driving data were divided into multiple clusters.
Technical Paper

Identification of Powertrain Rigid-Body Properties Based on Operation Modal Method

2009-11-02
2009-01-2761
Based on the existing methodology, the operation modal method by polyreference least-squares frequency domain method is applied. A methodology of rigid-body properties identification of the non-linear stiffness and damping mounting system (the mounting system of powertrain) is introduced and validated. Then the mode parameters and inertia properties of a powertrain rigid-body have been identified by operation modal method. Finally, by the comparison between the results of experiment properties and the result of theoretical calculation, it shows that the mode parameters and inertia properties of powertrain can be identified accurately by operation modal method.
Technical Paper

Parameter Identification of PMSM for EPS Based on an Improved MRAS Method

2014-04-01
2014-01-0271
Whether high-precision torque control or motor condition monitoring need accurate motor parameters. For the three parameters of surface-mounted permanent magnet synchronous motor (SPMSM), the voltage equation is rank-deficient. To solve this problem, some scholars proposed methods that build full rank equations with signal injection, but this will produce motor torque ripple, which is not suitable for application to the EPS. Therefore, this paper proposes a method based on MRAS to identify motor parameters step by step. The proposed two steps identification method can make the reference model full rank in every step, but the total decoupling between parameters identification processes cannot be realized for the assumption that the prior step result is the real value. It was found in experiment that this effect varies with the motor operating conditions.
Technical Paper

Research on the Classification and Identification for Personalized Driving Styles

2018-04-03
2018-01-1096
Most of the Advanced Driver Assistance System (ADAS) applications are aiming at improving both driving safety and comfort. Understanding human drivers' driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system performance, in particular, the acceptance and adaption of ADAS to human drivers. The research presented in this paper focuses on the classification and identification for personalized driving styles. To motivate and reflect the information of different driving styles at the most extent, two sets, which consist of six kinds of stimuli with stochastic disturbance for the leading vehicles are created on a real-time Driver-In-the-Loop Intelligent Simulation Platform (DILISP) with PanoSim-RT®, dSPACE® and DEWETRON® and field test with both RT3000 family and RT-Range respectively.
Technical Paper

Spatio-Temporal Trajectory Planning Using Search And Optimizing Method for Autonomous Driving

2024-04-09
2024-01-2563
In the field of autonomous driving trajectory planning, it’s virtual to ensure real-time planning while guaranteeing feasibility and robustness. Current widely adopted approaches include decoupling path planning and velocity planning based on optimization method, which can’t always yield optimal solutions, especially in complex dynamic scenarios. Furthermore, search-based and sampling-based solutions encounter limitations due to their low resolution and high computational costs. This paper presents a novel spatio-temporal trajectory planning approach that integrates both search-based planning and optimization-based planning method. This approach retains the advantages of search-based method, allowing for the identification of a global optimal solution through search. To address the challenge posed by the non-convex nature of the original solution space, we introduce a spatio-temporal semantic corridor structure, which constructs a convex feasible set for the problem.
Technical Paper

Tire Carcass Camber and its Application for Overturning Moment Modeling

2013-04-08
2013-01-0746
The properties of contact patch are key factors for tire modeling. Researchers have paid more attention to the contact patch shape and vertical pressure distribution. Some innovative concepts, such as Local Carcass Camber, have been presented to explain special tire modeling phenomena. For a pragmatic tire model, a concise model structure and fewer parameters are considered as the primary tasks for the modeling. Many empirical tire models, such as the well-known Magic Formula model, would become more complex to achieve satisfactory modeling accuracy, due to increasing number of input variables, so the semi-empirical or semi-physical modeling method becomes more attractive. In this paper, the concept of Tire Carcass Camber is introduced first. Different from Local Carcass Camber, Tire Carcass Camber is an imaginary camber angle caused only by lateral force on the unloaded tire.
Journal Article

Vehicle Longitudinal Control Algorithm Based on Iterative Learning Control

2016-04-05
2016-01-1653
Vehicle Longitudinal Control (VLC) algorithm is the basis function of automotive Cruise Control system. The main task of VLC is to achieve a longitudinal acceleration tracking controller, performance requirements of which include fast response and high tracking accuracy. At present, many control methods are used to implement vehicle longitudinal control. However, the existing methods are need to be improved because these methods need a high accurate vehicle dynamic model or a number of experiments to calibrate the parameters of controller, which are time consuming and costly. To overcome the difficulties of controller parameters calibration and accurate vehicle dynamic modeling, a vehicle longitudinal control algorithm based on iterative learning control (ILC) is proposed in this paper. The algorithm works based on the information of input and output of the system, so the method does not require a vehicle dynamics model.
X