Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Damping Force Optimal Control Strategy for Semi-Active Suspension System

2024-04-09
2024-01-2286
Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model.
Technical Paper

Economic Analysis of Online DC-Drive System for Long Distance Heavy-Duty Transport Vehicle Incorporating Multi-Factor Sensitivities

2024-04-09
2024-01-2452
Currently, the rapid expansion of the global road transport industry and the imperative to reduce carbon emissions are propelling the advancement of electrified highways (EH). In order to conduct a comprehensive economic analysis of EH, it is crucial to develop a detailed /8.and comprehensive economic model that takes into account various transportation modes and factors that influence the economy. However, the existing economic models for EH lack comprehensiveness in terms of considering different transportation modes and economic factors. This study aims to fill this gap by designing an economic model for an EH-based Online DC-driven system (ODS) for long distance heavy-duty transport vehicle incorporating multi-factor sensitivities. Firstly, the performance parameters of the key components of the system are calculated using vehicle dynamics equations which involves selecting and matching the relevant components and determining the fundamental cost of vehicle transformation.
Technical Paper

Recognition and Classification of Vehicle Target Using the Vehicle-Mounted Velodyne LIDAR

2014-04-01
2014-01-0322
This paper describes a novel recognition and classification method of vehicle targets in urban road based on a vehicle-mounted Velodyne HDL64E light detection and ranging (LIDAR) system. The autonomous vehicle will choose different driving strategy according to the surrounding traffic environments to guarantee that the driving is safe, stable and efficient. It is helpful for controller to provide the efficient stagey to know the exact type of vehicle around. So this method concentrates on reorganization and classification the type of vehicle targets so that the controller can provide a safe and efficient driving strategy for autonomous ground vehicles. The approach is targeted at high-speed ground vehicle, so real-time performance of the method plays a critical role. In order to improve the real-time performance, some methods of data preprocessing should be taken to simplify the large-size long-range 3D point clouds.
Technical Paper

Research on Adaptive Cruise Control Strategy Considering the Disturbance of Preceding Vehicle and Multi-Objective Optimization

2021-04-06
2021-01-0338
Adaptive Cruise Control (ACC) includes three modes: cruise control, car following control, and autonomous emergency braking. Among them, the car following control mode is mainly used to manage the speed and vehicle spacing approach the preceding vehicle within the range of smooth acceleration changes. In addition, although the motion information signal of the preceding vehicle can be collected by auxiliary equipment, it is still a random variable and normally regarded as a disturbance to affect the performance of vehicle controller. Therefore, this paper proposed an ACC strategy considering the disturbance of the preceding vehicle and multi-objective optimization.
Technical Paper

Simulation of Curved Road Collision Prevention Warning System of Automobile Based on V2X

2020-04-14
2020-01-0707
The high popularity of automobiles has led to frequent collisions. According to the latest statistics of the United Nations, about 1.25 million people worldwide die from road traffic accidents each year. In order to improve the safety of vehicles in driving, the active safety system has become a research hotspot of various car companies and research institutions around the world. Among them, the more mature and popular active security system are Forward Collision Warning(FCW) and Autonomous Emergency Braking(AEB). However, the current active safety system is based on traditional sensors such as radar and camera. Therefore, the system itself has many limitations due to the shortage of traditional sensors. Compared to traditional sensors, Vehicle to Everything (V2X) technology has the advantages of richer vehicle parameter information, no perceived blind spots, dynamic prediction of dangerous vehicle status, and no occlusion restriction.
X