Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Design and Position Control of a Novel Electric Brake Booster

2018-04-03
2018-01-0812
The electric vehicles and the intelligent vehicles put forward to new requirements for the brake system, such as the vacuum-independent braking, automatic or active braking, and regenerative braking, which are the key link for the vehicle’s safety and economy. However, the traditional vacuum brake booster is no longer able to meet these requirements. In this article, a novel integrated power-assisted actuator of brake system is proposed to satisfy the brake system requirements of the electric vehicles and intelligent vehicles. The electronic brake booster system is designed to achieve the function of boosting pedal force of driver, being independent on vacuum source, supplying autonomous or active braking. It is mainly composed of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, and a reaction disk. The scheme design and power-assisted braking control are the key for the electronic actuator.
Journal Article

Design and Power-Assisted Braking Control of a Novel Electromechanical Brake Booster

2018-04-03
2018-01-0762
As a novel assist actuator of brake system, the electromechanical brake (EMB) booster has played a significant role in the battery electric vehicles and automatic driving vehicles. It has advantages of independent to vacuum source, active braking, and tuning pedal feeling compared with conventional vacuum brake booster. In this article, a novel EMB booster system is proposed, which is consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction by gears and ball screw, a servo body, and a reaction disk. Together with the hydraulic control unit, it has two working modes: active braking for automatic drive and passive braking for driver intervention. The structure and work principle of the electric brake booster system is first introduced. The precise control from pedal force to hydraulic pressure is the key for such a power-assisted brake actuator. We translate the control problem of force feedback control to position tracking control.
Technical Paper

Personalized Eco-Driving for Intelligent Electric Vehicles

2018-08-07
2018-01-1625
Minimum energy consumption with maximum comfort driving experience define the ideal human mobility. Recent technological advances in most Advanced Driver Assistance Systems (ADAS) on electric vehicles not only present a significant opportunity for automated eco-driving but also enhance the safety and comfort level. Understanding driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system comfort. This research focuses on the personalized and green adaptive cruise control for intelligent electric vehicle, which is also known to be MyEco-ACC. MyEco-ACC is based on the optimization of regenerative braking and typical driving styles. Firstly, a driving style model is abstracted as a Hammerstein model and its key parameters vary with different driving styles. Secondly, the regenerative braking system characteristics for the electric vehicle equipped with 4-wheel hub motors are analyzed and braking force distribution strategy is designed.
X