Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

A Driving Simulator Study of Young Driver’s Behavior under Angry Emotion

2019-04-02
2019-01-0398
The driving behaviors of young drivers under the influence of anger are analyzed by driving simulator in this paper. A total of 12 subjects are enrolled during the experiment. Standardized videos are utilized to induce the driver's anger emotion. And the driver's electrocardiogram (ECG) signal is collected synchronously and compared before and after emotional trigger, which prove the validity of emotional trigger. Based on the result, the driver's driving performance under the straight road and the curve under normal state and angry state are compared and analyzed. The results of independent sample t-test show that there are significant differences in the running time of straight sections and the standard deviation of steering wheel angle in curves between normal and angry states. In conclusion, the longitudinal and lateral operation of drivers is unstable in angry state and the driver will be more destructive to the regular driving behavior.
Technical Paper

A Fuzzy Decision-Making System for Automotive Application

1998-02-23
980519
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

1999-03-01
1999-01-0209
Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.
Technical Paper

A Study of Vehicle Response Asymmetries During Severe Driving Maneuvers

2004-03-08
2004-01-1788
During Phase VI of the National Highway Traffic Safety Administration's (NHTSA) Light Vehicle Rollover Research Program, three of the twenty-six light vehicles tested exhibited significant response asymmetries with respect to left versus right steer maneuvers. This paper investigates possible vehicle asymmetric characteristics and unintended inputs that may cause vehicle asymmetric response. An analysis of the field test data, results from suspension and steering parameter measurements, and a summary of a computer simulation study are also given.
Technical Paper

Active Interior Noise Control for Passenger Vehicle Using the Notch Dual-Channel Algorithms with Two Different Predictive Filters

2021-02-18
2020-01-5228
Active control of low-frequency engine order noise helps to improve the passenger’s sense of hearing, so it has become one of the hot topics in the automotive field. Depth improvement of active noise control (ANC) performance from the perspective of novel algorithms has attracted the attention of researchers. The conventional notch dual-channel filtered-x least mean square (NDFxLMS) algorithm shows acceptable noise reduction for the elimination of engine order noise. To further enhance the steady-state ANC effect, this paper proposed two new notch algorithms: the notch dual-channel filtered-x recursive least square (NDFxRLS) algorithm and the notch dual-channel affine projection (NDAP) algorithm. Vehicle simulation tests show that both the proposed algorithms, especially the NDFxRLS algorithm, have a satisfying performance for the cancellation of interior noise from the engine.
Technical Paper

An Efficient Assistance Tool for Evaluating the Effect of Tire Characteristics on Vehicle Pull Problem

2020-04-14
2020-01-1237
The vehicle pull problem is very important to driving safety. Major factors that may cause the pull problem related to tire include variations of geometric dimension (e.g. RPK) and stiffness (e.g. cornering stiffness, aligning stiffness), plysteer and conicity. In previous research, the influencing mechanism of these factors was well studied. But in fact, vehicle pull problem caused by tire is probabilistic. When we assemble four tires onto the car, there could be 384 different assembly arrangements. If there are significant differences among these four tires, there will also be significant differences in the influence of different tire assembly schemes on vehicle pull, which has not been systematically discussed in previous studies. If we want to evaluate the pull performance of all these arrangements by vehicle test, it will be a time consuming process which will take almost 24 working days, along with a high test expense.
Journal Article

Analysis of Performance Parameters of Torsional Vibration Damper Under Various Operating Conditions

2013-04-08
2013-01-1488
The performance parameters of torsional vibration damper, including stiffness and damping, have great influence on the torsional vibration of automobile driveline. At present, the research on torsional vibration damper mainly concentrates on the torsional stiffness, but rarely on the torsional damping characteristics. This paper systematically studied the effect of torsional stiffness and damping on torsional vibration of automobile driveline under uniform speed conditions, accelerated and decelerated conditions, idling conditions and resonance conditions. The requirements on stiffness and damping of various operating conditions were summarized. The effect and requirements researched were useful to performance match design of torsional vibration damper.
Technical Paper

Applications of Computer Simulations for Part and Process Design for Automotive Stampings

1997-02-24
970985
Recent studies in sheet metal forming, conducted at universities world wide, emphasize the development of computer aided techniques for process simulation. To be practical and acceptable in a production environment, these codes must be easy to use and allow relatively quick solutions. Often, it is not necessary to make exact predictions but rather to establish the influence of process variables upon part quality, tool stresses, material flow, and material thickness variation. In cooperation with its industrial partners, the ERC for Net Shape Manufacturing of the Ohio State University has applied a number of computer codes for analysis and design of sheet metal forming operations. This paper gives a few selected examples taken from automotive applications and illustrates practical uses of computer simulations to improve productivity and reduce tool development and manufacturing costs.
Technical Paper

Biosignal-Based Driving Experience Analysis between Automated Mode and Manual Mode

2024-04-09
2024-01-2504
With the rapid development of intelligent driving technology, there has been a growing interest in the driving comfort of automated vehicles. As vehicles become more automated, the role of the driver shifts from actively engaging in driving tasks to that of a passenger. Consequently, the study of the passenger experience in automated driving vehicles has emerged as a significant research area. In order to examine the impact of automatic driving on passengers' riding experience in vehicle platooning scenarios, this study conducted real vehicle experiments involving six participants. The study assessed the subjective perception scores, eye movement, and electrocardiogram (ECG) signals of passengers seated in the front passenger seat under various vehicle speeds, distances, and driving modes. The results of the statistical analysis indicate that vehicle speed has the most substantial influence on passenger perception.
Technical Paper

Braking Control Strategy Based on Electronically Controlled Braking System and Intelligent Network Technology

2019-11-04
2019-01-5038
In order to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers, a braking control strategy based on Electronically Controlled Braking System (EBS) and intelligent network technology under non-emergency braking conditions is proposed. The controller utilizes the intelligent network technology’s characteristics of the workshop communication to obtain the driving environment information of the current vehicle firstly, and then calculate the optimal braking deceleration of the vehicle based on optimal control method. The strategy will distribute the braking force according to the ideal braking force distribution condition based on the EBS according to the braking deceleration; the braking force will be converted to braking pressure according to brake characteristics. Computer co-simulations of the proposed strategy are performed, the strategy is verified under different initial speeds.
Technical Paper

Case History: Engine Timing Gear Noise Reduction

1999-05-17
1999-01-1716
This paper describes the procedures used to reduce the tonal noise of a class eight truck engine timing gear train that was initially found to be objectionable under idle operating conditions. Initial measurements showed that the objectionable sounds were related to the fundamental gear mesh frequency, and its second and third harmonics. Experimental and computational procedures used to study and trouble-shoot the problem include vibration and sound measurements, transmission error analysis of the gears under light load condition, and a dynamic analysis of the drive system. Detail applications of these techniques are described in this paper.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface

2007-04-16
2007-01-0649
The interface between a plenum and primary runner in log-style intake manifolds is one of the dominant sources of flow losses in the breathing system of Internal Combustion Engines (ICE). A right-angled T-junction is one such interface between the plenum (main duct) and the primary runner (sidebranch) normal to the plenum's axis. The present study investigates losses associated with the combining flow through these junctions, where fluid from both sides of the plenum enters the primary runner. Steady, incompressible-flow experiments for junctions with circular cross-sections were conducted to determine the effect of (1) runner interface radius of 0, 10, and 20% of the plenum diameter, (2) plenum-to-runner area ratio of 1, 2.124, and 3.117, and (3) runner taper area ratio of 2.124 and 3.117. Mass flow rate in each branch was varied to obtain a distribution of flow ratios, while keeping the total flow rate constant.
Technical Paper

Comparative Analysis of Clustering Algorithms Based on Driver Steering Characteristics

2024-04-09
2024-01-2570
Driver steering feature clustering aims to understand driver behavior and the decision-making process through the analysis of driver steering data. It seeks to comprehend various steering characteristics exhibited by drivers, providing valuable insights into road safety, driver assistance systems, and traffic management. The primary objective of this study is to thoroughly explore the practical applications of various clustering algorithms in processing driver steering data and to compare their performance and applicability. In this paper, principal component analysis was employed to reduce the dimension of the selected steering feature parameters. Subsequently, K-means, fuzzy C-means, the density-based spatial clustering algorithm, and other algorithms were used for clustering analysis, and finally, the Calinski-Harabasz index was employed to evaluate the clustering results. Furthermore, the driver steering features were categorized into lateral and longitudinal categories.
Technical Paper

Control Synthesis for Distributed Vehicle Platoon Under Different Topological Communication Structures

2019-04-02
2019-01-0494
The wireless inter-vehicle communication provide a manner to achieve multi-vehicle cooperative driving, and the platoon of automotive vehicle can significantly improve traffic efficiency and ensure traffic safety. Previous researches mostly focus on the state of the proceeding vehicle, and transmit information from self to the succeeding vehicle. Nevertheless, this structure possesses high requirements for controller design and shows poor effect in system stability. In this paper, the state of vehicles is not only related to the information of neighbor vehicles, while V2V communication transmit information over a wide range of area. To begin with, the node dynamic model of vehicle is described by linear integrator with inertia delay and the space control strategy is proposed with different topological communication structures as BF, LBF, PBF, etc.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Technical Paper

Deep Reinforcement Learning Based Collision Avoidance of Automated Driving Agent

2024-04-09
2024-01-2556
Automated driving has become a very promising research direction with many successful deployments and the potential to reduce car accidents caused by human error. Automated driving requires automated path planning and tracking with the ability to avoid collisions as its fundamental requirement. Thus, plenty of research has been performed to achieve safe and time efficient path planning and to develop reliable collision avoidance algorithms. This paper uses a data-driven approach to solve the abovementioned fundamental requirement. Consequently, the aim of this paper is to develop Deep Reinforcement Learning (DRL) training pipelines which train end-to-end automated driving agents by utilizing raw sensor data. The raw sensor data is obtained from the Carla autonomous vehicle simulation environment here. The proposed automated driving agent learns how to follow a pre-defined path with reasonable speed automatically.
Technical Paper

Design and Control of Torque Feedback Device for Driving Simulator Based on MR Fluid and Coil Spring Structure

2018-04-03
2018-01-0689
Since steering wheel torque feedback is one of the crucial factors for drivers to gain road feel and ensure driving safety, it is especially important to simulate the steering torque feedback for a driving simulator. At present, steering wheel feedback torque is mainly simulated by an electric motor with gear transmission. The torque response is typically slow, which can result in drivers’ discomfort and poor driving maneuverability. This paper presents a novel torque feedback device with magnetorheological (MR) fluid and coil spring. A phase separation control method is also proposed to control its feedback torque, including spring and damping torques respectively. The spring torque is generated by coil spring, the angle of coil spring can be adjusted by controlling a brushless DC motor. The damping torque is generated by MR fluid, the damping coefficient of MR fluid can be adjusted by controlling the current of excitation coil.
X