Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

A Hybrid Physical and Data-Driven Framework for Improving Tire Force Calculation Accuracy

2023-04-11
2023-01-0750
The accuracy of tire forces directly affects the vehicle dynamics model precision and determines the ability of the model to develop the simulation platform or design the control strategy. In the high slip angle, due to the complex interactions at tire-road interfaces, the forces generated by the tires are high nonlinearity and uncertainty, which pose issues in calculating tire force accurately. This paper presents a hybrid physical and data-driven tire force calculation framework, which can satisfy the high nonlinearity and uncertainty condition, improve the model accuracy and effectively leverage prior knowledge of physical laws. The parameter identification for the physical tire model and the data-based compensation for the unknown errors between the physical tire model and actual tire force data are contained in this framework. First, the parameters in the selected combined-slip Burckhardt tire model are identified by the nonlinear least square method with tire test data.
Technical Paper

A Multi-mode Control Strategy for EV Based on Typical Situation

2017-03-28
2017-01-0438
A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance. To solve above problems, this paper uses the key technology of mathematical statistics process in MATLAB, such as the mean, linear fitting and discrete algorithms to clean up, screening and classification the original data in general rules, and based on short trips in the segments of kinematics analysis method to establish a representative of quintessential driving cycle.
Journal Article

A Novel Method of Radar Modeling for Vehicle Intelligence

2016-09-14
2016-01-1892
The conventional radar modeling methods for automotive applications were either function-based or physics-based. The former approach was mainly abstracted as a solution of the intersection between geometric representations of radar beam and targets, while the latter one took radar detection mechanism into consideration by means of “ray tracing”. Although they each has its unique advantages, they were often unrealistic or time-consuming to meet actual simulation requirements. This paper presents a combined geometric and physical modeling method on millimeter-wave radar systems for Frequency Modulated Continuous Wave (FMCW) modulation format under a 3D simulation environment. With the geometric approach, a link between the virtual radar and 3D environment is established. With the physical approach, on the other hand, the ideal target detection and measurement are contaminated with noise and clutters aimed to produce the signals as close to the real ones as possible.
Technical Paper

Accurate Pressure Control Strategy of Electronic Stability Program Based on the Building Characteristics of High-Speed Switching Valve

2019-04-02
2019-01-1107
The Electronic Stability Program (ESP), as a key actuator of traditional automobile braking system, plays an important role in the development of intelligent vehicles by accurately controlling the pressure of wheels. However, the ESP is a highly nonlinear controlled object due to the changing of the working temperature, humidity, and hydraulic load. In this paper, an accurate pressure control strategy of single wheel during active braking of ESP is proposed, which doesn’t rely on the specific parameters of the hydraulic system and ESP. First, the structure and working principle of ESP have been introduced. Then, we discuss the possibility of Pulse Width Modulation (PWM) control based on the mathematical model of the high-speed switching valve. Subsequently, the pressure building characteristics of the inlet and outlet valves are analyzed by the hardware in the Loop (HiL) experimental platform.
Technical Paper

An Investigation of Shaft Dynamic Effects on Gear Vibration and Noise Excitations

2003-05-05
2003-01-1491
Transmission error has long been identified to be the main exciter of gear whine noise. This research effort seeks to investigate the mechanisms and principal controlling factors that affect the actual noise generation from a typical gearbox housing due to transmission error excitations. The insight gained is expected to help in identifying possible noise control procedures in typical gearing applications. The example gearbox of this paper is an aircraft auxiliary-drive idler gearbox run at low load so that transmission error is the primary mesh excitation. A limited set of dynamic noise and vibration data are collected in transient speed run-ups. A contact-mechanics gear-tooth model is used to predict the static transmission error at each mesh. A finite-element model of the shafting that incorporates complex shaft and bearing data is used to predict the shaft dynamics with the static transmission error at the gear mesh(es) as the sole excitation.
Technical Paper

Automatic Drive Train Management System for 4WD Vehicle Based on Road Situation Identification

2018-04-03
2018-01-0987
The slip ratio of vehicle driving wheels is easily beyond a reasonable range in the complex and changeable driving conditions. In order to achieve the adaptive acceleration slip regulation of four-wheel driving (4WD) vehicle, a fuzzy control strategy of Automatic Drive Train Management (ADM) system based on road situation identification was proposed in this paper. Firstly, the influence on the control strategy of ADM system was analyzed from two aspects, which included the different road adhesion coefficients and the vehicle’s ramp driving state. In the meantime several quantitative expressions of relevant control parameters were derived. Secondly, the fuzzy logic control algorithm was adopted to design a road situation identification subsystem and a ramp driving state identification subsystem respectively. The former was based on the μ-S curve model, and the latter was based on the vehicle driving equilibrium equation.
Technical Paper

Auxiliary Drive Control Strategy of Hydraulic Hub-Motor Auxiliary System for Heavy Truck

2016-09-27
2016-01-8113
To improve traditional heavy commercial vehicles performance, this paper introduces a novel hydraulic hub-motor auxiliary system, which could achieve auxiliary driving and auxiliary braking function. Firstly, the system configuration and operation modes are described. In order to achieve coordinating control and distribution of the engine power between mechanical and hydraulic paths, the paper proposes an optimal algorithm based on enhance of vehicle slip efficiency and the results show that displacement of hydraulic variable pump relates with the transmission gear ratio. And then the hydraulic pump displacement controller is designed, in which the feedforward and feedback strategy is adopted. Considering the characteristics of hydraulic hub-motor auxiliary system, a layered auxiliary drive control strategy is proposed in the paper, which includes signal layers, core control layers and executive layers.
Technical Paper

Case History: Engine Timing Gear Noise Reduction

1999-05-17
1999-01-1716
This paper describes the procedures used to reduce the tonal noise of a class eight truck engine timing gear train that was initially found to be objectionable under idle operating conditions. Initial measurements showed that the objectionable sounds were related to the fundamental gear mesh frequency, and its second and third harmonics. Experimental and computational procedures used to study and trouble-shoot the problem include vibration and sound measurements, transmission error analysis of the gears under light load condition, and a dynamic analysis of the drive system. Detail applications of these techniques are described in this paper.
Journal Article

Circumferential Variation of Noise at the Blade-Pass Frequency in a Turbocharger Compressor with Ported Shroud

2021-08-31
2021-01-1044
The ported shroud casing treatment for turbocharger compressors offers a wider operating flow range, elevated boost pressures at low compressor mass flow rates, and reduced broadband whoosh noise in spark-ignition internal combustion engine applications. However, the casing treatment elevates tonal noise at the blade-pass frequency (BPF). Typical rotational speeds of compressors employed in practice push BPF noise to high frequencies, which then promote multi-dimensional acoustic wave propagation within the compressor ducting. As a result, in-duct acoustic measurements become sensitive to the angular location of pressure transducers on the duct wall. The present work utilizes a steady-flow turbocharger gas stand featuring a unique rotating compressor inlet duct to quantify the variation of noise measured around the duct at different angular positions.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Corner Design in Deep Drawn Rectangular Parts

1997-02-24
970437
The influence of die corner geometry on the attainable draw depth of rectangular parts was investigated using 3-D FEM and optimum rectangular blanks. Axisymmetric cup analysis was not adequate because a corner assist effect promotes corner draw. Guidelines for selecting corner radius were developed and the sensitivities of the maximum part depth to other process variables, such as drawbead restraint force; die clearance gap; friction coefficient; strain rate sensitivity; material anisotropy; and strain hardening exponent, were simulated. The results are much more conservative than handbook rules, which to not to take into account the details of blank size, drawbead restraint, die geometry, material properties, and friction.
Technical Paper

Design and Conduct of Precision Planetary Gear Vibration Experiments

2009-05-19
2009-01-2071
Despite a large body of analytical work characterizing the dynamic motion of planetary gears, supporting experimental data is limited. Experimental results are needed to support computer modeling and offer practical optimization guidelines to gear designers. This paper presents the design and implementation of a test facility and precision test fixtures for accurate measurement of planetary gear vibration at operating conditions. Acceleration measurements are made on all planetary bodies under controlled torque/speed conditions. Custom, high-precision test fixtures accommodate instrumentation, ensure accurate alignment, help isolate gear dynamics, and allow for variability in future testing. Results are compared with finite element and lumped parameter models.
Technical Paper

Design of a Hybrid Exhaust Silencing System for a Production Engine

2005-05-16
2005-01-2349
A prototype hybrid exhaust silencing system consisting of dissipative and reactive components is designed based on the boundary element method (BEM) with a specific emphasis on its acoustic performance as evaluated relative to a production system. The outer dimensions of the prototype system are comparable to its production counterpart, which has two silencers connected by a pipe. The predicted transmission loss by BEM for the prototype is compared with the experimental results in an impedance tube for both the prototype and production hardware, providing a design guidance for the former. The sound pressure levels measured at the tailpipe exit during the engine ramp-up experiments in a dynamometer laboratory are presented to compare the two systems, providing the final assessment.
Journal Article

Design of a Multi-Chamber Silencer for Turbocharger Noise

2009-05-19
2009-01-2048
A multi-chamber silencer is designed by a computational approach to suppress the turbocharger whoosh noise downstream of a compressor in an engine intake system. Due to the significant levels and the broadband nature of the source spanning over 1.5 – 3.5 kHz, three Helmholtz resonators are implemented in series. Each resonator consists of a chamber and a number of slots, which can be modeled as a cavity and neck, respectively. Their target resonance frequencies are tuned using Boundary Element Method to achieve an effective noise reduction over the entire frequency range of interest. The predicted transmission loss of the silencer is then compared with the experimental results from a prototype in an impedance tube setup. In view of the presence of rapid grazing flow, these silencers may be susceptible to whistle-noise generation. Hence, the prototype is also examined on a flow bench at varying flow rates to assess such flow-acoustic coupling.
Technical Paper

Development and Implementation of a Path-Following Algorithm for an Autonomous Vehicle

2007-04-16
2007-01-0815
This paper describes the development and implementation of an accurate and repeatable path-following algorithm focused ultimately on vehicle testing. A compact, lightweight, and portable hardware package allows easy installation and negligible impact on the vehicle mass, even for the smallest automobile. Innovative features include the ability to generate a smooth, evenly-spaced path vector regardless the quality of the given path. The algorithm proposed in this work is suitable for testing in a controlled environment. The system was evaluated in simulation and performed well in road tests at low speeds.
Technical Paper

Development of Simulation Platform and Control Strategy of Electronic Braking System for Commercial Vehicles

2014-09-30
2014-01-2286
Pneumatic Electric Braking System (EBS) is getting widely spread for commercial vehicles. Pneumatic EBS improves the problem of slow response of traditional pneumatic braking system by implementing brake-by-wire. However, the time-delay response and hysteresis of some electro-pneumatic components and some other issues decrease the response and control accuracy of the pneumatic EBS.
Technical Paper

Development of an Analysis Program to Predict Efficiency of Automotive Power Transmission and Its Applications

2018-04-03
2018-01-0398
Prediction of power efficiency of gear boxes has become an increasingly important research topic since fuel economy requirements for passenger vehicles are more stringent, due to not only fuel cost but also environmental regulations. Under this circumstance, the automotive industry is dedicatedly focusing on developing a highly efficient gear box. Thus, the analysis of power efficiency of gear box should be performed to have a transmission that is highly efficient as much as possible at the beginning of design stage. In this study, a program is developed to analyze the efficiency of an entire gearbox, considering all components’ losses such as gear mesh, wet clutches, bearings, oil pump and so on. The analytical models are based on the formulations of each component power loss model which has been developed and published in many existing papers. The program includes power flow analysis of both a parallel gear-train and a planetary gear-train.
Technical Paper

Dynamic Evolution of the 3-D Flow Field During the Latter Part of the Intake Stroke in an IC Engine

1998-02-23
980485
Measurements of the temporal evolution of the 3-D velocity field were performed in an IC engine during the latter part of the intake stroke using a Water Analog Engine Simulation Rig and the 3-D Particle Tracking Velocimetry technique (3-D PTV). The engine head tested was a typical 4 valve, pent-roof type combustion chamber shape with slightly asymmetric intake passages to favor a preferred swirl with one intake valve almost deactivated to reinforce the swirling flow pattern. This study was aimed at characterizing the dynamic development of the flow field resulting from this head geometry and asymmetric valve event during the latter part of the intake stroke. The most salient feature of this flow field is that this final, highly organized and energetic vortex does not emerge until relatively late in the intake stroke. Even as late at 60° BBDC, the flow field is still characterized by smaller (of the order of 1/4 or 1/3 of the bore size) structures, particularly in the tumble plane.
Technical Paper

Effect of E-Modulus Variation on Springbackand a Practical Solution

2018-04-03
2018-01-0630
Springback affects the dimensional accuracy and final shape of stamped parts. Accurate prediction of springback is necessary to design dies that produce the desired part geometry and tolerances. Springback occurs after stamping and ejection of the part because the state of the stresses and strains in the deformed material has changed. To accurately predict springback through finite element analysis, the material model should be well defined for accurate simulation and prediction of stresses and strains after unloading. Despite the development of several advanced material models that comprehensively describe the Bauschinger effect, transient behavior, permanent softening of the blank material, and unloading elastic modulus degradation, the prediction of springback is still not satisfactory for production parts. Dies are often recut several times, after the first tryouts, to compensate for springback and achieve the required part geometry.
X