Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

3D Automotive Millimeter-Wave Radar with Two-Dimensional Electronic Scanning

2017-03-28
2017-01-0047
The radar-based advanced driver assistance systems (ADAS) like autonomous emergency braking (AEB) and forward collision warning (FCW) can reduce accidents, so as to make vehicles, drivers and pedestrians safer. For active safety, automotive millimeter-wave radar is an indispensable role in the automotive environmental sensing system since it can work effectively regardless of the bad weather while the camera fails. One crucial task of the automotive radar is to detect and distinguish some objects close to each other precisely with the increasingly complex of the road condition. Nowadays almost all the automotive radar products work in bidimensional area where just the range and azimuth can be measured. However, sometimes in their field of view it is not easy for them to differentiate some objects, like the car, the manhole covers and the guide board, when they align with each other in vertical direction.
Technical Paper

Analyze Signal Processing Software for Millimeter-Wave Automotive Radar System by Using a Software Testbench Built by SystemVue

2016-09-14
2016-01-1879
Millimeter-wave automotive radars can prevent traffic accidents and save human lives as they can detect vehicles and pedestrians even in night and in bad weather. Various types of automotive radars operating at 24 and 77 GHz bands are developed for various applications, like adaptive cruise control, blind-spot detection and lane change assistance. In each year, millions of millimeter-wave radar are sold worldwide. Millimeter-wave radar is composed of radar hardware and radar signal processing software, which detects the targets among noise, measures the distance, longitudinal speed and the azimuth angle of the targets, tracks the targets continuously, and controls the ego vehicle to brake or accelerate. Performance of the radar signal processing software is closely related with the radar hardware properties and radar measurement conditions.
X