Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

A 3D Simulation Methodology for Predicting the Effects of Blasts on a Vehicle Body

2019-04-02
2019-01-1033
Triggered explosions are increasingly becoming common in the world today leading to the loss of precious lives under the most unexpected circumstances. In most scenarios, ordinary citizens are the targets of such attacks, making it essential to design countermeasures in open areas as well as in mobility systems to minimize the destructive effects of such explosive-induced blasts. It would be rather difficult and to an extent risky to carry out physical experiments mimicking blasts in real world scenarios. In terms of mechanics, the problem is essentially one of fluid-structure interaction in which pressure waves in the surrounding air are generated by detonating an explosive charge which then have the potential to cause severe damage to any obstacle on the path of these high-energy waves.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Technical Paper

A Comparison of the Mechanical Performance of AA6061-T6 Extrusions Subjected to Axial Crushing and Axial Cutting

2019-04-02
2019-01-1094
Conventional axially loaded energy absorbers dissipate kinetic energy through progressive folding. The significant fluctuations in load and high risk of transition to global bending are drawbacks that engineers have attempted to mitigate through several methods. A novel energy dissipation mechanism, referred to as axial cutting, utilizes thin-walled extrusions and a strengthened cutting tool to absorb energy in an axial impact. Compared to progressive folding, this can be achieved with minimal fluctuations in load during the deformation process. Based upon estimates from finite element models, a series of test cases were postulated where, for 8 and 10-bladed cutting scenarios, greater total energy absorption could be achieved through axial cutting than with progressive folding of geometrically similar extrusions. The specimens were AA6061 extrusions having T6 temper conditions that possessed 63.5 mm outer diameters and 1.5 mm wall thicknesses.
Technical Paper

A Data-Based Modeling Approach for the Prediction of Front Impact (NCAP) Safety Performance of a Passenger Vehicle

2021-04-06
2021-01-0923
Designing a vehicle for superior crash safety performance in consumer rating tests such as US-NCAP is a compelling target in the design of passenger vehicles. In today’s context, there is also a high emphasis on making a vehicle as lightweight as possible which calls for an efficient design. In modern vehicle design, these objectives can only be achieved through Computer-Aided Engineering (CAE) for which a detailed CAD (Computer-Aided Design) model of a vehicle is a pre-requisite. In the absence of the latter (i.e. a matured CAD model) at the initial and perhaps the most crucial phase of vehicle body design, a rational approach to design would be to resort to a knowledge-based methodology which can enable crash safety assessment of an assumed design using artificial intelligence techniques such as neural networks.
Technical Paper

A Hardness Study on Laser Cladded Surfaces for a Selected Bead Overlap Conditions

2017-03-28
2017-01-0285
Laser cladding is used to coat a surface of a metal to enhance the metallurgical properties at the surface level of a substrate. For surface cladding operations, overlapping bead geometry is required. Single bead analyses do not provide a complete representation of essential properties; hence, this research focuses on overlapping conditions. The research scope targets the coaxial laser cladding process specifically for P420 stainless steel clad powder using a fiber optic laser with a 4.3 mm spot size on a low/medium carbon structural steel plate (AISI 1018). Many process parameters influence the bead geometrical shape, and it is assumed that the complex temperature distributions within the process could cause subsequent large variations in hardness values. The bead overlap configurations experiments are performed with 40%, 50% and 60% bead overlaps for a three-pass bead formation.
Technical Paper

A Mathematical Model for Design and Production Verification Planning

1999-05-10
1999-01-1624
The paper focuses on various important decisions of verification and testing plans of the product during its design and production stages. In most of the product and process development projects, decisions on verification and testing are ad-hoc or based on traditions. Such decisions never guarantee the performance of the product as planned, during its whole life cycle. We propose an analytical approach to provide the concrete base for such crucial decisions of verification planning. Accordingly, a mathematical model is presented. Also, a case study of an automotive Electro-mechanical product is included to illustrate the application of the model.
Technical Paper

A Multi-mode Control Strategy for EV Based on Typical Situation

2017-03-28
2017-01-0438
A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance. To solve above problems, this paper uses the key technology of mathematical statistics process in MATLAB, such as the mean, linear fitting and discrete algorithms to clean up, screening and classification the original data in general rules, and based on short trips in the segments of kinematics analysis method to establish a representative of quintessential driving cycle.
Journal Article

A New Control Strategy for Electric Power Steering on Low Friction Roads

2014-04-01
2014-01-0083
In vehicles equipped with conventional Electric Power Steering (EPS) systems, the steering effort felt by the driver can be unreasonably low when driving on slippery roads. This may lead inexperienced drivers to steer more than what is required in a turn and risk losing control of the vehicle. Thus, it is sensible for tire-road friction to be accounted for in the design of future EPS systems. This paper describes the design of an auxiliary EPS controller that manipulates torque delivery of current EPS systems by supplying its motor with a compensation current controlled by a fuzzy logic algorithm that considers tire-road friction among other factors. Moreover, a steering system model, a nonlinear vehicle dynamics model and a Dugoff tire model are developed in MATLAB/Simulink. Physical testing is conducted to validate the virtual model and confirm that steering torque decreases considerably on low friction roads.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

A Novel Approach for Combat Vehicle Mobility Definition and Assessment

2012-04-16
2012-01-0302
Mobility assessment for combat vehicles is often a great challenge for the military due to various subjective attributes. The attributes' characteristics vary significantly depending on the vehicle type and its operating environments such as terrain, weather, and human factors. A clear definition and relationship between multiple attributes including human factors is necessary to assess mobility. To the best of authors' knowledge, many existing mobility assessment techniques use complex analytical methods and focus on individual attributes. In this paper, for the first time, the authors propose a novel approach to define vehicle mobility and its influencing attributes using qualitative linguistic fuzzy variables, which are defined as having values between 0 and 1. The authors also propose a fuzzy logic mobility (FLM) model and a simulation approach to assess a combat vehicle's mobility.
Technical Paper

A Novel Hybrid Technique for Thermal Analysis of Permanent Magnet Synchronous Motor Used in Electric Vehicle Application

2020-04-14
2020-01-0464
Due to high torque and power density, permanent magnet synchronous motor (PMSM) has become the most viable candidate for electric vehicle (EV) traction application. However, to obtain such high torque and power density within a compact motor structure can cause a significant temperature rise within the motor while operating. As a result of high temperature rise, permanent magnet demagnetization may even occur within the motor. Thus, PMSM is susceptible to thermal instability. Therefore, to ensure thermal stability during varying operating conditions, thermal analysis is a mandatory procedure in addition to electromagnetic analysis during the design phase of the motor. In this paper, a computationally efficient numerical finite element analysis (FEA) process has been proposed for thermal analysis of PMSM.
Technical Paper

A Prediction Model of RON Loss Based on Neural Network

2022-03-29
2022-01-0162
The RON(Research Octane Number) is the most important indicator of motor petrol, and the petrol refining process is one of the important links in petrol production. However, RON is often lost during petrol refining and RON Loss means the value of RON lost during petrol refining. The prediction of the RON loss of petrol during the refining process is helpful to the improvement of petrol refining process and the processing of petrol. The traditional RON prediction method relied on physical and chemical properties, and did not fully consider the high nonlinearity and strong coupling relationship of the petrol refining process. There is a lack of data-driven RON loss models. This paper studies the construction of the RON loss model in the petrol refining process.
Technical Paper

A Statistical Method for Damage Detection in Hydraulic Components

1995-09-01
952089
The detection and tracking of the damage process between surfaces in contact, together with an estimation of the remaining service life, are significant contributions to the efficient operation of hydraulic components. The commonly used approach of analyzing vibration signals in terms of spectral distributions, while being very effective, has some shortcomings. For example, the results are sensitive to both load and speed variations. The approach presented in this paper is based on the fact that the asperity distribution of surfaces in good condition have a near normal probability distribution. Deviation from this can be tracked using statistical moments. The Beta probability distribution provides a number of shapes, including normal, under the control of two positive numbers, α and β. Unlike the normal distribution, which indicates defects by kurtosis values higher than 3.0, the Beta distribution provides more flexibility.
Technical Paper

A Study on Nonlinear Stiffness Characteristic of Air Spring for a Bus

2002-11-18
2002-01-3092
Using the nonlinear finite element analysis, three nonlinear characteristics of the rubber gasbag of the air spring on the bus are thoroughly analyzed, including the nonlinear characteristic of the rubber gasbag with multi layers of composite materials, the nonlinear large displacement geometry characteristic of the rubber gasbag on working, and the nonlinear contact characteristic of the rubber gasbag when contacts the pedestal and the top cover plate. A model is build and the nonlinear characteristic of the air spring on the bus is analyzed using the ABAQUS software. At last, the article discusses parameters that influence on the characteristic of the air spring for the bus.
Journal Article

Accurate Pressure Control Based on Driver Braking Intention Identification for a Novel Integrated Braking System

2021-04-06
2021-01-0100
With the development of intelligent and electric vehicles, higher requirements are put forward for the active braking and regenerative braking ability of the braking system. The traditional braking system equipped with vacuum booster has difficulty meeting the demand, therefore it has gradually been replaced by the integrated braking system. In this paper, a novel Integrated Braking System (IBS) is presented, which mainly contains a pedal feel simulator, a permanent magnet synchronous motor (PMSM), a series of transmission mechanisms, and the hydraulic control unit. As an integrative system of mechanics-electronics-hydraulics, the IBS has complex nonlinear characteristics, which challenge the accurate pressure control. Furthermore, it is a completely decoupled braking system, the pedal force doesn’t participate in pressure-building, so it is necessary to precisely identify driver’s braking intention.
Technical Paper

Aeroelastic Response and Structural Improvement for Heavy-Duty Truck Cab Deflectors

2019-01-14
2019-01-5004
Numerical simulations on the fluid-structure interaction were conducted using commercial software STAR-CCM+ and ABAQUS. The aeroelastic responses of a deflector under several different working conditions were simulated utilizing finite volume and finite element methods to investigate the aeroelastic problem of automotive deflectors. Results showed that the structural response of a top deflector is minimal under the influence of aerodynamics given its large structural stiffness. The size of the top deflector was optimised by using thickness as a variable. The volume and quality of the top deflector were significantly reduced, and its lightweight performance was improved to satisfy the stiffness performance requirement. The vibration of a side deflector structure was mainly induced by the turbulence on the structure surface. The amplitude of vibration was small and the vibration gradually converged in a few seconds without obvious regularity.
Technical Paper

Aging Simulation of Electric Vehicle Battery Cell Using Experimental Data

2021-04-06
2021-01-0763
The adoption of lithium-ion batteries in vehicle electrification is fast growing due to high power and energy demand on hybrid and electric vehicles. However, the battery overall performance changes with time through the vehicle life. This paper investigates the electric vehicle battery cell aging under different usages. Battery cell experimental data including open circuit voltage and internal resistance is utilized to build a typical electric vehicle model in the AVL-Cruise platform. Four driving cycles (WLTP, UDDS, HWFET, and US06) with different ambient temperatures are simulated to acquire the battery cell terminal currents. These battery cell terminal current data are inputs to the MATLAB/Simulink battery aging model. Simulation results show that battery degrades quickly in high ambient temperatures. After 15,000 hours usage in 50 degrees Celsius ambient temperature, the usable cell capacity is reduced up to 25%.
Technical Paper

An Experiment and Simulation Study on Failure of High Voltage Cables under Indentation

2020-04-14
2020-01-0199
Failure of high voltage cables (HVCs) which sometimes occurs in electric vehicle collision is one of the fuses that leads to severe thermal runaway of the traction battery system, which has not gotten thorough investigations. This paper presents an experiment and simulation study on the failure behaviors of HVCs under indentation loadings. Tests were performed with different combinations of indenter (cylinder indenter with a diameter of 5 mm which was labeled as D5, cylinder indenter with a diameter of 15 mm which was labeled as D15 and wedge indenter with an angle of 60° which was labeled as V60) and loading speed (1.5 mm/min for quasi-static and 2m/s for dynamic). Experimental results indicated that the failure behavior of HVCs was both influenced by the indenter shape and loading speeds. Sharp indenter will led to a component failure sequence from outmost to innermost.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
X