Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Cold and Warm Start Characteristics using HVO and RME Blends in a V6 Diesel Engine

2013-04-08
2013-01-1306
The first several cycles determine the quality of an engine start. Low temperatures and air/fuel ratio cause incomplete combustion of the fuel. This can lead to dramatic increases in HC and PM emissions. In order to meet Euro V legislation requirements which have stricter cold start emission levels, it is critical to study the characteristics of cold and warm starting of engines in order to develop an optimized operation. The NO and THC emissions were measured by fast CLD and Fast FID gas analyzers respectively and PM in both nucleation and accumulation modes were measured by DMS500. The coolant temperature was controlled in order to guarantee the experiment repeatability. The results show that at cold start using RME60 produced higher NO and lower THC than the other tested fuels while combustion of HVO60 produced a similar level of NO but lower THC compared with mineral diesel. Meanwhile, the nucleation mode of mineral diesel was similar to RME60 but higher than HVO60.
Technical Paper

Experimental Study on Diesel Spray Characteristics Using Different Ambient Gases

2016-04-05
2016-01-0867
The spray characteristics is the key to achieve the clean combustion in diesel engines and the in-cylinder conditions are one of the factors affecting the spray process. In this work, the diesel spray characteristics were studied over a range of injection pressures and ambient pressures in a constant volume chamber and a single-hole common rail diesel injector was used. The present work is to decouple the effects of ambient pressure and ambient density on near-field spray processes by using different ambient gas (N2, and CO2). The spray processes were captured by a Photron SA X2 camera with speed of 300,000 fps and resolution of 256 by 80 pixels. The spray processes were analyzed in terms of penetration length and spray tip velocity. Difference in penetration length and tip velocity were found at the same ambient density and/or ambient pressure when different ambient gases were used.
Technical Paper

Understanding Interaction between Reactive Jets in Pre-Chamber Ignition of Gaseous Fuel

2023-04-11
2023-01-0225
In order to improve the ignition capacity and burning rate for spark-ignited engines, pre-chamber jet ignition is a promising technique to achieve fast premixed combustion and low pollutant emissions. However, few studies focus on the interaction between multiple reacting (i.e. flamelet) or reacted (i.e. radical) jets, its effect on ignition, exotherm and flow behaviors also remain to be revealed. This paper investigated two types of jet interaction under different pre-chamber structures, including the jet-crossing and unequal nozzle designs. Optical experiments under different conditions were conducted in a constant volume combustion chamber with CH4 as fuel, using simultaneous high speed schlieren and OH* chemiluminescence method. Meanwhile, computational fluid dynamics (CFD) simulations with CH4 and NH3/CH4 blend fuels were carried out using Converge software to provide further insights of turbulent flow and ignition process.
X