Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Combustion Simulation of Dual Fuel CNG Engine Using Direct Injection of Natural Gas and Diesel

2015-04-14
2015-01-0851
The increased availability of natural gas (NG) in the U.S. has renewed interest in the application to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties to generate a spatial gradient of fuel-air mixtures and reactivity. Typically, a high octane fuel is premixed by means of port-injection, followed by direct injection of a high cetane fuel late in the compression stroke. Previous work by the authors has shown that NG and diesel RCCI offers improved fuel efficiency and lower oxides of nitrogen (NOx) and soot emissions when compared to conventional diesel diffusion combustion. The work concluded that NG and diesel RCCI engines are load limited by high rates of pressure rise (RoPR) (>15 bar/deg) and high peak cylinder pressure (PCP) (>200 bar).
Technical Paper

Computational Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using Natural Gas

2014-04-01
2014-01-1321
Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties that are injected at different times to generate a spatial gradient of fuel-air mixtures and reactivity. Researchers have shown that RCCI offers improved fuel efficiency and lower NOx and Soot exhaust emissions when compared to conventional diesel diffusion combustion. The majority of previous research work has been focused on premixed gasoline or ethanol for the low reactivity fuel and diesel for the high reactivity fuel. The increased availability of natural gas (NG) in the U.S. has renewed interest in the application of compressed natural gas (CNG) to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Thus, RCCI using CNG and diesel fuel warrants consideration.
Technical Paper

Development of a Multiple Injection Strategy for Heated Gasoline Compression Ignition (HGCI)

2023-04-11
2023-01-0277
A multiple-injection combustion strategy has been developed for heated gasoline direct injection compression ignition (HGCI). Gasoline was injected into a 0.4L single cylinder engine at a fuel pressure of 300bar. Fuel temperature was increased from 25degC to a temperature of 280degC by means of electric injector heater. This approach has the potential of improving fuel efficiency, reducing harmful CO and UHC as well as particulate emissions, and reducing pressure rise rates. Moreover, the approach has the potential of reducing fuel system cost compared to high pressure (>500bar) gasoline direct injection fuel systems available in the market for GDI SI engines that are used to reduce particulate matter. In this study, a multiple injection strategy was developed using electric heating of the fuel prior to direct fuel injection at engine speed of 1500rpm and load of 12.3bar IMEP.
Technical Paper

Potential of a Hydrogen Fueled Opposed-Piston Four Stroke (OP4S) Engine

2023-04-11
2023-01-0408
The aim of this study is to develop a pathway towards Hydrogen combustoin on an opposed-piston four stroke engine (OP4S) by using 1D simulation code from Gamma Technologies. By its configuration, the OP4S engine has significant thermal efficiency benefits versus conventional ICE. The benefit of the OP4S is reduced heat losses due to elimination of the cylinder head, which increase the brake thermal efficiency. A hydrogen-fueled (H2) opposed-piston four stroke (OP4S) engine was modeled using GTPower to determine the potential on performance, thermal efficiency and emissions targets. The 1D model was first validated on E10 gasoline using experimental data and was used to explore changes to fuel type in NG and H2, fueling location (TPI and DI), fuel mixture strength (stoichiometric and lean), for an optimized plenum volume and turbocharger selection.
X