Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Braking Force Distribution Strategy in Integrated Braking System Based on Wear Control and Hitch Force Control

2018-04-03
2018-01-0827
A braking force distribution strategy in integrated braking system composed of the main braking system and the auxiliary braking system based on braking pad wear control and hitch force control under non-emergency braking condition is proposed based on the Electronically Controlled Braking System (EBS) to reduce the difference in braking pad wear between different axles and to decrease hitch force between tractors and trailers. The proposed strategy distributes the braking force based on the desired braking intensity, the degree of the braking pad wear and the limits of certain braking regulations to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers. Computer co-simulations of the proposed strategy are performed.
Technical Paper

A New Measurement Method for Separating Airborne and Structure Borne Sound from an I.C. Engine’s Valve Train Mechanism

1993-05-01
931335
With the introduction of lean burn and multivalve technology to produce gasoline engines with power outputs above 50 kW/litre there has also been an increasing interest in baseline engine noise. One component of this is due to the operation of valve train mechanism. The work described in this paper concentrates on this aspect of engine noise and uses a motoring rig to allow a full assessment of the problem. Usually the noise of the valve train mechanism is measured outside the valve cover. Here both noise inside and outside the valve cover is assessed using an extension of the acoustic substitution technique and the individual contribution of both airborne and structure borne noise assessed. It is found that airborne noise generated by the valve mechanism inside the valve cover and transmitted through the cover can be a major noise source at low frequencies (200 - 1200 Hz) and higher engine speeds.
Technical Paper

A New Method to Accelerate Road Test Simulation on Multi-Axial Test Rig

2017-03-28
2017-01-0200
Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
Technical Paper

A Novel Three-Planetary-Gear Power-Split Hybrid Powertrain for Tracked Vehicles

2018-04-03
2018-01-1003
Tracked vehicles are widely used for agriculture, construction and many other areas. Due to high emissions, hybrid electric driveline has been applied to tracked vehicles. The hybrid powertrain design for the tracked vehicle has been researched for years. Different from wheeled vehicles, the tracked vehicle not only requires high mobility while straight driving, but also pursues strong steering performance. The paper takes the hybrid track-type dozers (TTDs) as an example and proposes an optimal design of a novel power-split powertrain for TTDs. The commercial hybrid TTD usually adopts the series hybrid powertrain, and sometimes with an extra steering mechanism, which has led to low efficiency and made the structure more complicated. The proposed three-planetary-gear power-split hybrid powertrain can overcome the problems above by utilizing the characteristics of planetary gear sets.
Technical Paper

A Prediction Method of Tire Combined Slip Characteristics from Pure Slip Test Data

2020-04-14
2020-01-0896
A high-precision steady state tire model is critical in the tire and vehicle matching research. For the moment, the popular Magic Formula model is an empirical model, which requires the pure and combined test data to identify the model parameters. Although MTS Flat-trac is an efficient tire test rig, the long test period and high test cost of a complete tire model tests for handling are yet to be solved. Therefore, it is necessary to explore a high accuracy method for predicting tire complex mechanical properties with as few test data as possible. In this study, a method for predicting tire combined slip characteristics from pure cornering and pure longitudinal test data has been investigated, and verified by comparing with the test data. Firstly, the prediction theory of UniTire model is introduced, and the formula for predicting combined slip characteristics based on constant friction coefficient is derived.
Technical Paper

A Prediction Model of RON Loss Based on Neural Network

2022-03-29
2022-01-0162
The RON(Research Octane Number) is the most important indicator of motor petrol, and the petrol refining process is one of the important links in petrol production. However, RON is often lost during petrol refining and RON Loss means the value of RON lost during petrol refining. The prediction of the RON loss of petrol during the refining process is helpful to the improvement of petrol refining process and the processing of petrol. The traditional RON prediction method relied on physical and chemical properties, and did not fully consider the high nonlinearity and strong coupling relationship of the petrol refining process. There is a lack of data-driven RON loss models. This paper studies the construction of the RON loss model in the petrol refining process.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

A Study on Nonlinear Stiffness Characteristic of Air Spring for a Bus

2002-11-18
2002-01-3092
Using the nonlinear finite element analysis, three nonlinear characteristics of the rubber gasbag of the air spring on the bus are thoroughly analyzed, including the nonlinear characteristic of the rubber gasbag with multi layers of composite materials, the nonlinear large displacement geometry characteristic of the rubber gasbag on working, and the nonlinear contact characteristic of the rubber gasbag when contacts the pedestal and the top cover plate. A model is build and the nonlinear characteristic of the air spring on the bus is analyzed using the ABAQUS software. At last, the article discusses parameters that influence on the characteristic of the air spring for the bus.
Technical Paper

Active Damping Control of Torsional Vibration in a Diesel Hybrid Powertrain

2019-12-19
2019-01-2342
This paper has designed a real time control algorithm to use ISG motor actively compensate the torque ripple produced by the engine, to reduce torsional vibration. This paper consists of 3 parts. In the first section, this paper has introduced the research object and its modification for experiments. Then the development of control strategy is presented. The engine dynamic model is built, and real-time control with a feedforward unit and a feedback unit is derived. Encoder and cylinder pressure is used for engine torque estimator. Then the ISG motor output the counter-waveform to make the overall output smooth. In order to verify the effectiveness of the control strategy, the final section has established a test bench, where two experiments are carried out. One of the experimental conditions is to set the engine at a constant operating point, while the other is to crank the engine from 0 rpm to idle speed with ISG motor.
Technical Paper

Aeroelastic Response and Structural Improvement for Heavy-Duty Truck Cab Deflectors

2019-01-14
2019-01-5004
Numerical simulations on the fluid-structure interaction were conducted using commercial software STAR-CCM+ and ABAQUS. The aeroelastic responses of a deflector under several different working conditions were simulated utilizing finite volume and finite element methods to investigate the aeroelastic problem of automotive deflectors. Results showed that the structural response of a top deflector is minimal under the influence of aerodynamics given its large structural stiffness. The size of the top deflector was optimised by using thickness as a variable. The volume and quality of the top deflector were significantly reduced, and its lightweight performance was improved to satisfy the stiffness performance requirement. The vibration of a side deflector structure was mainly induced by the turbulence on the structure surface. The amplitude of vibration was small and the vibration gradually converged in a few seconds without obvious regularity.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

Analysis of Energy Consumption on Typical Main Cylinder Booster Based Brake-by-Wire System

2016-09-18
2016-01-1955
The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system.
Journal Article

Analysis of Performance Parameters of Torsional Vibration Damper Under Various Operating Conditions

2013-04-08
2013-01-1488
The performance parameters of torsional vibration damper, including stiffness and damping, have great influence on the torsional vibration of automobile driveline. At present, the research on torsional vibration damper mainly concentrates on the torsional stiffness, but rarely on the torsional damping characteristics. This paper systematically studied the effect of torsional stiffness and damping on torsional vibration of automobile driveline under uniform speed conditions, accelerated and decelerated conditions, idling conditions and resonance conditions. The requirements on stiffness and damping of various operating conditions were summarized. The effect and requirements researched were useful to performance match design of torsional vibration damper.
Technical Paper

Application of Slope Sensor in Hill-Start to AMT (Automated Manual Transmission) Vehicles

2015-04-14
2015-01-1108
In order to improve the drivability and reduce the clutch friction loss, low-cost slope sensor is used in hill-start control of AMT vehicles. After the power spectrum analysis of the original signal and the design of the digital filter, the angle of the slope is obtained with short enough delay and small enough noise. By using this slope angle information, slope resistance force can be calculated online so that the vehicle can be prevented from sliding backward and optimal launch control can be realized. The digital filter of slope angle signal and the optimal controller of dry clutch engagement are embedded in the TCU (Transmission Control Unit) of a micro-car Geely Panda. Real-vehicle experiments are carried out with optimal clutch controller, which shows that the hill-start with low-cost slope sensor and optimal clutch controller can provide successful vehicle launch with little driveline shock. In addition, it can also avoid backward sliding and engine over-speed effectively.
Technical Paper

Automobile Interior Noise Prediction Based on Energy Finite Element Method

2011-04-12
2011-01-0507
For the purpose of predicting the interior noise of a passenger automobile at middle and high frequency, an energy finite element analysis (EFEA) model of the automobile was created using EFEA method. The excitations including engine mount excitation and road excitation were measured by road experiment at a speed of 120 km/h. The sound excitation was measured in a semi-anechoic chamber. And the wind excitation was calculated utilizing numeric computation method of computational fluid dynamics (CFD). The sound pressure level (SPL) and energy density contours of the interior acoustic cavity of the automobile were presented at 2000 Hz. Meanwhile, the flexural energy density and flexural velocity of body plates were calculated. The SPL of interior noise was predicted and compared with the corresponding value of experiment.
Technical Paper

Balanced Suspension Thrust Rod Fatigue Life Prediction

2016-09-27
2016-01-8044
In order to predict the fatigue life of thrust rod heavy duty commercial vehicle balanced suspension, based on the continuum mechanics theory, the fatigue life prediction model of rubber with equivalent effect as damage parameter is established. Based on the equivalent stress and fatigue cumulative damage theory, the fatigue damage evolution equation of rubber material expressed by stress is derived by using the strain energy function. The general fatigue life model is established by using the maximum logarithmic principal strain as the damage parameter. The finite element model of the thrust rod is established, and the stress distribution of the spherical hinge rubber layer and the easy damage area are analyzed. Based on the equivalent stress calculation results and the axial tension stress and strain data of the rubber material, the accuracy of the results of the finite element calculation is verified.
Technical Paper

Characterization of Mechanical Behavior of Thermoplastics with Local Deformation Measurement

2012-04-16
2012-01-0040
In quasi-static tension and compression tests of thermoplastics, full-field strain distribution on the gage section of the specimen can be captured using the two-dimensional digital image correlation method. By loading the test specimens made of a talc-filled and impact-modified polypropylene up to tensile failure and large compressive strains, this study has revealed that inhomogeneous deformation within the gage section occurs quite early for both test types. This leads to the challenge of characterizing the mechanical properties - some mechanical properties such as stress-strain relationship and fracture strain could depend on the measured section length and location. To study this problem, the true stress versus true strain curves determined locally in different regions within the gage length are compared.
Journal Article

Characterization of Metal Foil in Anisotropic Fracture Behavior with Dynamic Tests

2018-04-03
2018-01-0108
Metal foil is a widely used material in the automobile industry, which not only is the honeycomb barrier material but is also used as current collectors in Li-ion batteries. Plenty of studies proved that the mechanical property of the metal foil is quite different from that of the metal sheet because of the size effect on microscopic scale, as the metal foil shows a larger fracture stress and a lower ductility than the metal sheet. Meanwhile, the fracture behavior and accurate constitutive model of the metal foil with the consideration of the strain rate effect are widely concerned in further studies of battery safety and the honeycomb. This article conducted experiments on 8011H18 aluminum foil, aiming to explore the quasi-static and dynamic tension testing method and the anisotropic mechanical behavior of the very thin foil. Two metal foil dog-bone specimens and three types of notched specimens were tested with a strain rate ranging from 2 × 10−4/s to 40/s and various stress states.
Journal Article

Cold and Warm Start Characteristics using HVO and RME Blends in a V6 Diesel Engine

2013-04-08
2013-01-1306
The first several cycles determine the quality of an engine start. Low temperatures and air/fuel ratio cause incomplete combustion of the fuel. This can lead to dramatic increases in HC and PM emissions. In order to meet Euro V legislation requirements which have stricter cold start emission levels, it is critical to study the characteristics of cold and warm starting of engines in order to develop an optimized operation. The NO and THC emissions were measured by fast CLD and Fast FID gas analyzers respectively and PM in both nucleation and accumulation modes were measured by DMS500. The coolant temperature was controlled in order to guarantee the experiment repeatability. The results show that at cold start using RME60 produced higher NO and lower THC than the other tested fuels while combustion of HVO60 produced a similar level of NO but lower THC compared with mineral diesel. Meanwhile, the nucleation mode of mineral diesel was similar to RME60 but higher than HVO60.
Technical Paper

Combustion and Emission Characteristics of an Ammonia-Hydrogen Engine under Passive- and Active-Jet Ignition

2024-04-09
2024-01-2109
In the context of carbon neutrality, ammonia is considered a zero-carbon fuel with potential applications in the transportation sector. However, its high ignition energy, low flame speed, and high natural temperature, indicative of low reactivity, make it challenging to be applied as a sole fuel in engines. In such a scenario, the use of another zero-carbon and highly reactive fuel, hydrogen, becomes necessary to enhance the combustion of ammonia. Furthermore, jet ignition, a method known for improving engine combustion performance, may also hold potential for enhancing the combustion performance of ammonia engines. To explore the applicability of jet ignition in engines, this study conducted experimental research on a single-cylinder engine. Two ignition methods were employed: passive jet ignition of premixed ammonia-hydrogen at a compression ratio of 11.5, and active jet ignition of pure ammonia using hydrogen jet flame at a compression ratio of 17.3.
X