Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Generation of Realistic Communication Scenarios for the Simulation of Automotive Multiplex Systems

1995-02-01
950294
The increasing complexity of communication protocols for asynchronous multiplex systems requires the use of simulation during the optimisation of these protocols or the integration of other control units. Consideration of realistic communication behaviour of the connected control units is essential for performance analysis of multiplex systems. For a first pass, the use of simple statistical distributions (e.g. Poisson distribution) is suitable to get some simulation results. A better way to get realistic results is the approximation of empirical communication data through the use of more complex statistical distribution (e.g. mixed Erlang distributions). In this paper several approaches for the approximation of empirical data are presented. Beside simple statistical distributions (with one parameter), the use of more complex statistical distributions is discussed and methods for the identification of their parameters are presented.
Technical Paper

Model-Based Calibration of an Automotive Climate Control System

2020-04-14
2020-01-1253
This paper describes a novel approach for modeling an automotive HVAC unit. The model consists of black-box models trained with experimental data from a self-developed measurement setup. It is capable of predicting the temperature and mass flow of the air entering the vehicle cabin at the various air vents. A combination of temperature and velocity sensors is the basis of the measurement setup. A measurement fault analysis is conducted to validate the accuracy of the measurement system. As the data collection is done under fluctuating ambient conditions, a review of the impact of various ambient conditions on the HVAC unit is performed. Correction models that account for the different ambient conditions incorporate these results. Numerous types of black-box models are compared to identify the best-suited type for this approach. Moreover, the accuracy of the model is validated using test drive data.
Technical Paper

Performance Characterization Platform for Vision Based Driver Safety Systems

2013-01-09
2013-26-0026
Many of the Advanced Driver Safety Systems (ADAS) provide vision based driver assistance. All vision based systems are not the same since they differ in algorithms. Thus, it is necessary to compare how robust these different algorithms are and provide the best possible solution to the end user. Such characterization is often difficult due to changing environmental conditions under which the algorithms have to perform. In these systems, performance becomes a critical parameter since any slight lapse could translate to serious danger on road. The reliability of any algorithm depends on its accuracy and consistency under varying environmental conditions. It is important to define the boundary conditions of the algorithm to evaluate these performance parameters. Often one finds out system performance under varying conditions only by expensive road testing.
Technical Paper

Virtual testing driven development process for side impact safety

2001-06-04
2001-06-0251
A new simulation tool was established and approved by TRW as part of the continuous improvement of the development process. This tool allows the OEM and the system supplier to keep high quality even with further reduced development times. The introduction of the tool in a side air-bag development program makes it possible to ensure high development confidence with a reduced number of vehicle crash tests and late availability of interior component parts.
X